Module: sunlineSEKF
Executive Summary
This module implements and tests a Switch Extended Kalman Filter in order to estimate the sunline direction.
More information can be found in the
PDF Description
Message Connection Descriptions
The following table lists all the module input and output messages. The module msg connection is set by the user from python. The msg type contains a link to the message structure definition, while the description provides information on what this message is used for.
Msg Variable Name |
Msg Type |
Description |
---|---|---|
navStateOutMsg |
name of the navigation output message containing the estimated states |
|
filtDataOutMsg |
name of the output filter data message |
|
cssDataInMsg |
name of the CSS sensor input message |
|
cssConfigInMsg |
name of the CSS configuration input message |
Functions
-
void SelfInit_sunlineSEKF(sunlineSEKFConfig *configData, int64_t moduleID)
This method initializes the configData for theCSS WLS estimator. It checks to ensure that the inputs are sane and then creates the output message
- Parameters:
configData – The configuration data associated with the CSS WLS estimator
moduleID – The module identifier
- Returns:
void
-
void Reset_sunlineSEKF(sunlineSEKFConfig *configData, uint64_t callTime, int64_t moduleID)
This method resets the sunline attitude filter to an initial state and initializes the internal estimation matrices.
- Parameters:
configData – The configuration data associated with the CSS estimator
callTime – The clock time at which the function was called (nanoseconds)
moduleID – The module identifier
- Returns:
void
-
void Update_sunlineSEKF(sunlineSEKFConfig *configData, uint64_t callTime, int64_t moduleID)
This method takes the parsed CSS sensor data and outputs an estimate of the sun vector in the ADCS body frame
- Parameters:
configData – The configuration data associated with the CSS estimator
callTime – The clock time at which the function was called (nanoseconds)
moduleID – The module identifier
- Returns:
void
-
void sunlineTimeUpdate(sunlineSEKFConfig *configData, double updateTime)
This method performs the time update for the sunline kalman filter. It calls for the updated Dynamics Matrix, as well as the new states and STM. It then updates the covariance, with process noise.
- Parameters:
configData – The configuration data associated with the CSS estimator
updateTime – The time that we need to fix the filter to (seconds)
- Returns:
void
-
void sunlineMeasUpdate(sunlineSEKFConfig *configData, double updateTime)
This method performs the measurement update for the sunline kalman filter. It applies the observations in the obs vectors to the current state estimate and updates the state/covariance with that information.
- Parameters:
configData – The configuration data associated with the CSS estimator
updateTime – The time that we need to fix the filter to (seconds)
- Returns:
void
-
void sunlineStateSTMProp(double dynMat[EKF_N_STATES_SWITCH * EKF_N_STATES_SWITCH], double bVec[SKF_N_STATES], double dt, double *stateInOut, double *stateTransition)
This method propagates a sunline state vector forward in time. Note that the calling parameter is updated in place to save on data copies. This also updates the STM using the dynamics matrix.
- Parameters:
stateInOut –
dynMat –
bVec –
dt – time step
stateTransition –
- Returns:
void
-
void sunlineHMatrixYMeas(double states[EKF_N_STATES_SWITCH], size_t numCSS, double cssSensorCos[MAX_N_CSS_MEAS], double sensorUseThresh, double cssNHat_B[MAX_NUM_CSS_SENSORS * 3], double *obs, double *yMeas, int *numObs, double *measMat)
This method computes the H matrix, defined by dGdX. As well as computing the innovation, difference between the measurements and the expected measurements. This methods modifies the numObs, measMat, and yMeas.
- Parameters:
states –
numCSS – The total number of CSS
cssSensorCos – The list of the measurements from the CSSs
sensorUseThresh – Thresh The Threshold below which the measuremnts are not read
cssNHat_B – The normals vector for each of the CSSs
obs – Pointer to the observations
yMeas – Pointer to the innovation
numObs – Pointer to the number of observations
measMat – Point to the H measurement matrix
- Returns:
void
-
void sunlineKalmanGain(double covarBar[EKF_N_STATES_SWITCH * EKF_N_STATES_SWITCH], double hObs[MAX_N_CSS_MEAS * EKF_N_STATES_SWITCH], double qObsVal, size_t numObs, double *kalmanGain)
This method computes the Kalman gain given the measurements.
- Parameters:
covarBar – The time updated covariance
hObs – The H matrix filled with the observations
qObsVal – The observation noise
numObs – The number of observations
kalmanGain – Pointer to the Kalman Gain
- Returns:
void
-
void sunlineDynMatrix(double states[EKF_N_STATES_SWITCH], double bVec[SKF_N_STATES], double dt, double *dynMat)
This method computes the dynamics matrix, which is the derivative of the dynamics F by the state X, evaluated at the reference state. It takes in the configure data and updates this A matrix pointer called dynMat
- Parameters:
states – Updated states
bVec – b vector
dt – Time step
dynMat – Pointer to the Dynamic Matrix
- Returns:
void
-
void sunlineCKFUpdate(double xBar[EKF_N_STATES_SWITCH], double kalmanGain[EKF_N_STATES_SWITCH * MAX_N_CSS_MEAS], double covarBar[EKF_N_STATES_SWITCH * EKF_N_STATES_SWITCH], double qObsVal, size_t numObs, double yObs[MAX_N_CSS_MEAS], double hObs[MAX_N_CSS_MEAS * EKF_N_STATES_SWITCH], double *x, double *covar)
This method computes the updated with a Classical Kalman Filter
- Parameters:
xBar – The state after a time update
kalmanGain – The computed Kalman Gain
covarBar – The time updated covariance
qObsVal – The observation noise
numObs – The amount of CSSs that get measurements
yObs – The y vector after receiving the measurements
hObs – The H matrix filled with the observations
x – Pointer to the state error for modification
covar – Pointer to the covariance after update
- Returns:
void
-
void sunlineSEKFUpdate(double kalmanGain[EKF_N_STATES_SWITCH * MAX_N_CSS_MEAS], double covarBar[EKF_N_STATES_SWITCH * EKF_N_STATES_SWITCH], double qObsVal, size_t numObs, double yObs[MAX_N_CSS_MEAS], double hObs[MAX_N_CSS_MEAS * EKF_N_STATES_SWITCH], double *states, double *x, double *covar)
This method computes the updated with a Extended Kalman Filter
- Parameters:
kalmanGain – The computed Kalman Gain
covarBar – The time updated covariance
qObsVal – The observation noise
numObs – The amount of CSSs that get measurements
yObs – The y vector after receiving the measurements
hObs – The H matrix filled with the observations
states – Pointer to the states
x – Pointer to the state error for modification
covar – Pointer to the covariance after update
- Returns:
void
-
void sunlineSEKFSwitch(double *bVec_B, double *states, double *covar)
This method computes the dcms necessary for the switch between the two frames. It the switches the states and the covariance, and sets s2 to be the new, different vector of the body frame.
- Parameters:
bVec_B – Pointer to b vector
states – Pointer to the states
covar – Pointer to the covariance
- Returns:
void
-
void sunlineSEKFComputeDCM_BS(double sunheading[SKF_N_STATES_HALF], double bVec[SKF_N_STATES_HALF], double *dcm)
compute the DCM
- Parameters:
sunheading – array of sun heading measurement states
bVec – array of bVec values
dcm – DCM pointer to be returned
- Returns:
void
-
struct sunlineSEKFConfig
- #include <sunlineSEKF.h>
Top level structure for the CSS-based Switch Extended Kalman Filter. Used to estimate the sun state in the vehicle body frame.
Public Members
The name of the output message
-
SunlineFilterMsg_C filtDataOutMsg
The name of the output filter data message
-
CSSArraySensorMsg_C cssDataInMsg
The name of the Input message
-
CSSConfigMsg_C cssConfigInMsg
[-] The name of the CSS configuration message
-
double qObsVal
[-] CSS instrument noise parameter
-
double qProcVal
[-] Process noise parameter
-
double dt
[s] seconds since last data epoch
-
double timeTag
[s] Time tag for statecovar/etc
-
double bVec_B[SKF_N_STATES_HALF]
[-] current vector of the b frame used to make Switch frame
-
double switchTresh
[-] Cosine of angle between singularity and S-frame. If close to 1, the threshold for switching frames is lower. If closer to 0.5 singularity is more largely avoided but switching is more frequent
-
double state[EKF_N_STATES_SWITCH]
[-] State estimate for time TimeTag
-
double x[EKF_N_STATES_SWITCH]
State errors
-
double xBar[EKF_N_STATES_SWITCH]
[-] Current mean state estimate
-
double covarBar[EKF_N_STATES_SWITCH * EKF_N_STATES_SWITCH]
[-] Time updated covariance
-
double covar[EKF_N_STATES_SWITCH * EKF_N_STATES_SWITCH]
[-] covariance
-
double stateTransition[EKF_N_STATES_SWITCH * EKF_N_STATES_SWITCH]
[-] State transition Matrix
-
double kalmanGain[EKF_N_STATES_SWITCH * MAX_N_CSS_MEAS]
Kalman Gain
-
double dynMat[EKF_N_STATES_SWITCH * EKF_N_STATES_SWITCH]
[-] Dynamics Matrix, A
-
double measMat[MAX_N_CSS_MEAS * EKF_N_STATES_SWITCH]
[-] Measurement Matrix, H
-
double W_BS[EKF_N_STATES_SWITCH * EKF_N_STATES_SWITCH]
[-] Switch Matrix to bring states and covariance to new S-frame when switch occurs
-
double obs[MAX_N_CSS_MEAS]
[-] Observation vector for frame
-
double yMeas[MAX_N_CSS_MEAS]
[-] Linearized measurement model data
-
double postFits[MAX_N_CSS_MEAS]
[-] PostFit residuals
-
double procNoise[(EKF_N_STATES_SWITCH - 3) * (EKF_N_STATES_SWITCH - 3)]
[-] process noise matrix
-
double measNoise[MAX_N_CSS_MEAS * MAX_N_CSS_MEAS]
[-] Maximally sized obs noise matrix
-
double cssNHat_B[MAX_NUM_CSS_SENSORS * 3]
[-] CSS normal vectors converted over to body
-
uint32_t numStates
[-] Number of states for this filter
-
size_t numObs
[-] Number of measurements this cycle
-
uint32_t numActiveCss
— Number of currently active CSS sensors
-
uint32_t numCSSTotal
[-] Count on the number of CSS we have on the spacecraft
-
double sensorUseThresh
— Threshold below which we discount sensors
-
double eKFSwitch
— Max covariance element after which the filter switches to an EKF
-
NavAttMsgPayload outputSunline
— Output sunline estimate data
-
CSSArraySensorMsgPayload cssSensorInBuffer
[-] CSS sensor data read in from message bus
-
BSKLogger *bskLogger
BSK Logging.