Source code for test_dipoleMapping

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#


#
#   Unit Test Script
#   Module Name:        dipoleMapping
#   Author:             Henry Macanas
#   Creation Date:      06 18, 2021
#
# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.
import numpy as np
from Basilisk.architecture import bskLogging
from Basilisk.architecture import messaging  # import the message definitions
from Basilisk.fswAlgorithms import dipoleMapping  # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions

accuracy = 1E-12

# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_

[docs]def test_dipoleMapping_module(): # update "module" in this function name to reflect the module name r""" **Validation Test Description** This script tests the mapping of a 3x1 requested Body frame dipole, ``dipole_B``, mapped correctly to individual torque bar requests and that the algorithm doesn't fail when the inputs are given zero values. **Description of Variables Being Tested** In this file we are checking the values of the output message variable: - ``mtbDipoleCmds[MAX_EFF_CNT]`` """ # each test method requires a single assert method to be called # pass on the testPlotFixture so that the main test function may set the DataStore attributes [testResults, testMessage] = dipoleMappingModuleTestFunction() assert testResults < 1, testMessage
def dipoleMappingModuleTestFunction(): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) bskLogging.setDefaultLogLevel(bskLogging.BSK_WARNING) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.01) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Initialize module under test's config message and add module to runtime call list module = dipoleMapping.dipoleMapping() module.steeringMatrix = [1., 0., 0., 0., 1., 0., 0., 0., 1.] module.ModelTag = "dipoleMapping" # update python name of test module unitTestSim.AddModelToTask(unitTaskName, module) # Initialize DipoleRequestBodyMsg dipoleRequestBodyInMsgContainer = messaging.DipoleRequestBodyMsgPayload() dipoleRequestBodyInMsgContainer.dipole_B = [1., 2., 3.] dipoleRequestBodyInMsg = messaging.DipoleRequestBodyMsg().write(dipoleRequestBodyInMsgContainer) # Initialize MTBArrayConfigMsg mtbArrayConfigParamsInMsgContainer = messaging.MTBArrayConfigMsgPayload() mtbArrayConfigParamsInMsgContainer.numMTB = 3 mtbArrayConfigParamsInMsgContainer.maxMtbDipoles = [1E3, 1E3, 1E3] mtbArrayConfigParamsInMsgContainer.GtMatrix_B = [1., 0., 0., 0., 1., 0., 0., 0., 1.] mtbArrayConfigParamsInMsg = messaging.MTBArrayConfigMsg().write(mtbArrayConfigParamsInMsgContainer) # Setup logging on the test module output message so that we get all the writes to it resultDipoleRequestMtbOutMsg = module.dipoleRequestMtbOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, resultDipoleRequestMtbOutMsg) # connect the message interfaces module.dipoleRequestBodyInMsg.subscribeTo(dipoleRequestBodyInMsg) module.mtbArrayConfigParamsInMsg.subscribeTo(mtbArrayConfigParamsInMsg) # Set the simulation time. unitTestSim.ConfigureStopTime(macros.sec2nano(0.0)) # seconds to stop simulation unitTestSim.InitializeSimulation() ''' TEST 1: Check that dipoles is non-zero expected value with trivial steeringMatrix. ''' unitTestSim.ExecuteSimulation() expectedDipole = [0.] * messaging.MAX_EFF_CNT expectedDipole[0:3] = [1., 2., 3.] testFailCount, testMessages = unitTestSupport.compareVector(expectedDipole, resultDipoleRequestMtbOutMsg.mtbDipoleCmds[0], accuracy, "dipoles", testFailCount, testMessages) ''' TEST 2: Check that dipoles is non-zero with non-trivial steeringMatrix. ''' beta = 45. * np.pi / 180. Gt = np.array([[np.cos(beta), -np.sin(beta)],[np.sin(beta), np.cos(beta)], [0., 0.]]) GtInverse = np.linalg.pinv(Gt) mtbArrayConfigParamsInMsgContainer.numMTB = 2 mtbArrayConfigParamsInMsgContainer.GtMatrix_B = [Gt[0, 0], Gt[0, 1], Gt[1, 0], Gt[1, 1], Gt[2, 0], Gt[2, 1]] mtbArrayConfigParamsInMsg = messaging.MTBArrayConfigMsg().write(mtbArrayConfigParamsInMsgContainer) module.mtbArrayConfigParamsInMsg.subscribeTo(mtbArrayConfigParamsInMsg) module.steeringMatrix = [GtInverse[0, 0], GtInverse[0, 1], GtInverse[0, 2], GtInverse[1, 0], GtInverse[1, 1], GtInverse[1, 2]] unitTestSim.InitializeSimulation() unitTestSim.ExecuteSimulation() expectedDipole = [0.] * messaging.MAX_EFF_CNT expectedDipole[0:2] = GtInverse @ np.array(dipoleRequestBodyInMsgContainer.dipole_B) testFailCount, testMessages = unitTestSupport.compareVector(expectedDipole, resultDipoleRequestMtbOutMsg.mtbDipoleCmds[0], accuracy, "dipoles", testFailCount, testMessages) ''' TEST 3: Check that dipoles is zero with zero input dipole. ''' dipoleRequestBodyInMsgContainer.dipole_B = [0., 0., 0.] dipoleRequestBodyInMsg = messaging.DipoleRequestBodyMsg().write(dipoleRequestBodyInMsgContainer) module.dipoleRequestBodyInMsg.subscribeTo(dipoleRequestBodyInMsg) unitTestSim.InitializeSimulation() unitTestSim.ExecuteSimulation() unitTestSim.ExecuteSimulation() expectedDipole = [0.] * messaging.MAX_EFF_CNT testFailCount, testMessages = unitTestSupport.compareVector(expectedDipole, resultDipoleRequestMtbOutMsg.mtbDipoleCmds[0], accuracy, "dipoles", testFailCount, testMessages) print("Accuracy used: " + str(accuracy)) if testFailCount == 0: print("PASSED: dipoleMapping unit test") else: print("Failed: dipoleMapping unit test") return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_dipoleMapping_module()