Source code for test_unitFacetSRPDynamicEffector


# ISC License
#
# Copyright (c) 2023, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

#
#   Unit Test Script
#   Module Name:        facetSRPDynamicEffector
#   Author:             Leah Kiner
#   Creation Date:      Dec 18 2022
#   Last Updated:       Dec 13 2023
#

import os

import matplotlib.pyplot as plt
import numpy as np
import pytest

from Basilisk import __path__

bskPath = __path__[0]
fileName = os.path.basename(os.path.splitext(__file__)[0])

from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import simIncludeGravBody
from Basilisk.utilities import macros
from Basilisk.utilities import RigidBodyKinematics as rbk
from Basilisk.utilities import unitTestSupport
from Basilisk.utilities import orbitalMotion
from Basilisk.simulation import facetSRPDynamicEffector
from Basilisk.simulation import spacecraft
from Basilisk.architecture import messaging

# Vary the articulated facet initial angles
[docs]@pytest.mark.parametrize("facetRotAngle1", [macros.D2R * -10.4, macros.D2R * 45.2, macros.D2R * 90.0, macros.D2R * 180.0]) @pytest.mark.parametrize("facetRotAngle2", [macros.D2R * -28.0, macros.D2R * 45.2, macros.D2R * -90.0, macros.D2R * 180.0]) def test_facetSRPTestFunction(show_plots, facetRotAngle1, facetRotAngle2): r""" **Validation Test Description** The unit test for this module ensures that the calculated Solar Radiation Pressure (SRP) force and torque acting on the spacecraft about the body-fixed point B is properly computed for either a static spacecraft or a spacecraft with any number of articulating facets. The spacecraft geometry defined in this test consists of a cubic hub and two circular solar arrays. Six static square facets represent the cubic hub and four articulated circular facets describe the articulating solar arrays. To validate the module functionality, the final SRP force simulation value is checked with the true value computed in python. **Test Parameters** Args: show_plots (bool): (True) Show plots, (False) Do not show plots facetRotAngle1 (double): [rad] Articulation angle for facets 7 and 8 (solar panel 1) facetRotAngle2 (double): [rad] Articulation angle for facets 9 and 10 (solar panel 2) """ [testResults, testMessage] = facetSRPTestFunction(show_plots, facetRotAngle1, facetRotAngle2) assert testResults < 1, testMessage
def facetSRPTestFunction(show_plots, facetRotAngle1, facetRotAngle2): testFailCount = 0 # Zero the unit test result counter testMessages = [] # Create an empty array to store the test log messages # Set up the simulation, task, and process unitTestSim = SimulationBaseClass.SimBaseClass() unitProcessName = "simProcess" dynProcess = unitTestSim.CreateNewProcess(unitProcessName) simulationTimeStep = macros.sec2nano(0.1) unitTaskName = "simTask" dynProcess.addTask(unitTestSim.CreateNewTask(unitTaskName, simulationTimeStep)) # Create the Sun gravFactory = simIncludeGravBody.gravBodyFactory() sun = gravFactory.createSun() sun.isCentralBody = True mu = sun.mu # Set custom Sun Spice data sunStateMsg = messaging.SpicePlanetStateMsgPayload() sunStateMsg.PositionVector = [0.0, 0.0, 0.0] sunStateMsg.VelocityVector = [0.0, 0.0, 0.0] sunMsg = messaging.SpicePlanetStateMsg().write(sunStateMsg) gravFactory.gravBodies['sun'].planetBodyInMsg.subscribeTo(sunMsg) # Create the spacecraft object scObject = spacecraft.Spacecraft() scObject.ModelTag = "scObject" oe = orbitalMotion.ClassicElements() oe.a = 149597870700.0 # [m] oe.e = 0.5 oe.i = 0.0 * macros.D2R oe.Omega = 0.0 * macros.D2R oe.omega = 0.0 * macros.D2R oe.f = 0.0 * macros.D2R rN, vN = orbitalMotion.elem2rv(mu, oe) oe = orbitalMotion.rv2elem(mu, rN, vN) # this stores consistent initial orbit elements scObject.hub.r_CN_NInit = rN # [m] Spacecraft inertial position scObject.hub.v_CN_NInit = vN # [m] Spacecraft inertial velocity scObject.hub.sigma_BNInit = np.array([0.0, 0.0, 0.0]) scObject.hub.omega_BN_BInit = np.array([0.0, 0.0, 0.0]) unitTestSim.AddModelToTask(unitTaskName, scObject) # Create the articulated facet angle messages facetRotAngle1MessageData = messaging.HingedRigidBodyMsgPayload() facetRotAngle1MessageData.theta = facetRotAngle1 facetRotAngle1MessageData.thetaDot = 0.0 facetRotAngle1Message = messaging.HingedRigidBodyMsg().write(facetRotAngle1MessageData) facetRotAngle2MessageData = messaging.HingedRigidBodyMsgPayload() facetRotAngle2MessageData.theta = facetRotAngle2 facetRotAngle2MessageData.thetaDot = 0.0 facetRotAngle2Message = messaging.HingedRigidBodyMsg().write(facetRotAngle2MessageData) # Create an instance of the facetSRPDynamicEffector module to be tested srpEffector = facetSRPDynamicEffector.FacetSRPDynamicEffector() srpEffector.ModelTag = "srpEffector" numFacets = 10 # Total number of spacecraft facets numArticulatedFacets = 4 # Number of articulated facets srpEffector.numFacets = numFacets srpEffector.numArticulatedFacets = numArticulatedFacets srpEffector.sunInMsg.subscribeTo(sunMsg) srpEffector.addArticulatedFacet(facetRotAngle1Message) srpEffector.addArticulatedFacet(facetRotAngle1Message) srpEffector.addArticulatedFacet(facetRotAngle2Message) srpEffector.addArticulatedFacet(facetRotAngle2Message) scObject.addDynamicEffector(srpEffector) unitTestSim.AddModelToTask(unitTaskName, srpEffector) # Set up the srpEffector spacecraft geometry data structure try: # Define facet areas area1 = 1.5 * 1.5 area2 = np.pi * (0.5 * 7.5) * (0.5 * 7.5) facetAreas = [area1, area1, area1, area1, area1, area1, area2, area2, area2, area2] # Define the facet normal vectors in B frame components facetNormals_B = [np.array([1.0, 0.0, 0.0]), np.array([0.0, 1.0, 0.0]), np.array([-1.0, 0.0, 0.0]), np.array([0.0, -1.0, 0.0]), np.array([0.0, 0.0, 1.0]), np.array([0.0, 0.0, -1.0]), np.array([0.0, 1.0, 0.0]), np.array([0.0, -1.0, 0.0]), np.array([0.0, 1.0, 0.0]), np.array([0.0, -1.0, 0.0])] # Define facet center of pressure locations relative to point B locationsPntB_B = [np.array([0.75, 0.0, 0.0]), np.array([0.0, 0.75, 0.0]), np.array([-0.75, 0.0, 0.0]), np.array([0.0, -0.75, 0.0]), np.array([0.0, 0.0, 0.75]), np.array([0.0, 0.0, -0.75]), np.array([4.5, 0.0, 0.75]), np.array([4.5, 0.0, 0.75]), np.array([-4.5, 0.0, 0.75]), np.array([-4.5, 0.0, 0.75])] # Define facet articulation axes in B frame components rotAxes_B = [np.array([0.0, 0.0, 0.0]), np.array([0.0, 0.0, 0.0]), np.array([0.0, 0.0, 0.0]), np.array([0.0, 0.0, 0.0]), np.array([0.0, 0.0, 0.0]), np.array([0.0, 0.0, 0.0]), np.array([1.0, 0.0, 0.0]), np.array([1.0, 0.0, 0.0]), np.array([-1.0, 0.0, 0.0]), np.array([-1.0, 0.0, 0.0])] # Define facet optical coefficients specCoeff = np.array([0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9]) diffCoeff = np.array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) # Populate the srpEffector spacecraft geometry structure with the facet information for i in range(numFacets): srpEffector.addFacet(facetAreas[i], specCoeff[i], diffCoeff[i], facetNormals_B[i], locationsPntB_B[i], rotAxes_B[i]) except: testFailCount += 1 testMessages.append("ERROR: FacetSRP unit test failed while setting facet parameters.") return testFailCount, testMessages # Set up data logging scPosDataLog = scObject.scStateOutMsg.recorder() sunPosDataLog = gravFactory.gravBodies['sun'].planetBodyInMsg.recorder() srpDataLog = srpEffector.logger(["forceExternal_B", "torqueExternalPntB_B"], simulationTimeStep) unitTestSim.AddModelToTask(unitTaskName, scPosDataLog) unitTestSim.AddModelToTask(unitTaskName, sunPosDataLog) unitTestSim.AddModelToTask(unitTaskName, srpDataLog) # Execute the simulation unitTestSim.InitializeSimulation() simulationTime = macros.sec2nano(10.0) unitTestSim.ConfigureStopTime(simulationTime) unitTestSim.ExecuteSimulation() # Retrieve the logged data timespan = scPosDataLog.times() * macros.NANO2SEC # [s] r_BN_N = scPosDataLog.r_BN_N # [m] sigma_BN = scPosDataLog.sigma_BN r_SN_N = sunPosDataLog.PositionVector # [m] srpForce_B = srpDataLog.forceExternal_B # [N] srpTorque_B = srpDataLog.torqueExternalPntB_B # [Nm] # Plot spacecraft inertial position plt.figure() plt.clf() plt.plot(timespan, r_BN_N[:, 0], label=r'$r_{\mathcal{B}/\mathcal{N}} \cdot \hat{n}_1$') plt.plot(timespan, r_BN_N[:, 1], label=r'$r_{\mathcal{B}/\mathcal{N}} \cdot \hat{n}_2$') plt.plot(timespan, r_BN_N[:, 2], label=r'$r_{\mathcal{B}/\mathcal{N}} \cdot \hat{n}_3$') plt.xlabel(r'Time (s)') plt.ylabel(r'${}^N r_{\mathcal{B}/\mathcal{N}}$ (m)') plt.legend() # Plot SRP force plt.figure() plt.clf() plt.plot(timespan, srpForce_B[:, 0], label=r'$F_{SRP} \cdot \hat{b}_1$') plt.plot(timespan, srpForce_B[:, 1], label=r'$F_{SRP} \cdot \hat{b}_2$') plt.plot(timespan, srpForce_B[:, 2], label=r'$F_{SRP} \cdot \hat{b}_3$') plt.xlabel('Time (s)') plt.ylabel(r'${}^B F_{SRP}$ (N)') plt.legend() # Plot SRP torque plt.figure() plt.clf() plt.plot(timespan, srpTorque_B[:, 0], label=r'$L_{SRP} \cdot \hat{b}_1$') plt.plot(timespan, srpTorque_B[:, 1], label=r'$L_{SRP} \cdot \hat{b}_2$') plt.plot(timespan, srpTorque_B[:, 2], label=r'$L_{SRP} \cdot \hat{b}_3$') plt.xlabel('Time (s)') plt.ylabel(r'${}^B L_{SRP}$ (Nm)') plt.legend() if show_plots: plt.show() plt.close("all") # Validate the results by comparing the last srp force and torque simulation values with the predicted values accuracy = 1e-12 test_val = np.zeros([3,]) for i in range(len(facetAreas)): test_val += checkFacetSRPForce(i, facetRotAngle1, facetRotAngle2, facetAreas[i], specCoeff[i], diffCoeff[i], facetNormals_B[i], rotAxes_B[i], sigma_BN[-1], r_BN_N[-1], r_SN_N[-1]) if not unitTestSupport.isArrayEqual(srpForce_B[-1, :], test_val, 3, accuracy): testFailCount += 1 testMessages.append("FAILED: FacetSRPEffector failed unit test at t=" + str( timespan[-1]) + "sec with a value difference of " + str( srpForce_B[-1, :] - test_val)) if testFailCount: print(testMessages) else: print("PASSED") return testFailCount, testMessages def checkFacetSRPForce(index, facetRotAngle1, facetRotAngle2, area, specCoeff, diffCoeff, facetNormal, facetRotAxis, sigma_BN, scPos, sunPos): # Define required constants speedLight = 299792458.0 # [m/s] Speed of light AstU = 149597870700.0 # [m] Astronomical unit solarRadFlux = 1368.0 # [W/m^2] Solar radiation flux at 1 AU # Compute dcm_BN dcm_BN = rbk.MRP2C(sigma_BN) # Compute Sun direction relative to point B in B frame components r_BN_B = np.matmul(dcm_BN, scPos) # [m] r_SN_B = np.matmul(dcm_BN, sunPos) # [m] r_SB_B = r_SN_B - r_BN_B # [m] # Determine unit direction vector pointing from sc to the Sun sHat = r_SB_B / np.linalg.norm(r_SB_B) # Rotate the articulated facet normal vectors if (index == 6 or index == 7): prv_BB0 = facetRotAngle1 * facetRotAxis dcm_BB0 = rbk.PRV2C(prv_BB0) facetNormal = np.matmul(dcm_BB0, facetNormal) if (index == 8 or index == 9): prv_BB0 = facetRotAngle2 * facetRotAxis dcm_BB0 = rbk.PRV2C(prv_BB0) facetNormal = np.matmul(dcm_BB0, facetNormal) # Determine the facet projected area cosTheta = np.dot(sHat, facetNormal) projArea = area * cosTheta # Determine the SRP pressure at the current sc location numAU = AstU / np.linalg.norm(r_SB_B) SRPPressure = (solarRadFlux / speedLight) * numAU * numAU # Compute the SRP force acting on the facet if projArea > 0: srp_force = -SRPPressure * projArea * ((1-specCoeff) * sHat + 2 * ( (diffCoeff / 3) + specCoeff * cosTheta) * facetNormal) else: srp_force = np.zeros([3,]) return srp_force if __name__=="__main__": facetSRPTestFunction( True, # show plots macros.D2R * -10.0, # facetRotAngle1 macros.D2R * 45.0, # facetRotAngle2 )