Source code for test_hingedBodyLinearProfiler

# 
#  ISC License
# 
#  Copyright (c) 2022, Autonomous Vehicle Systems Lab, University of Colorado Boulder
# 
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
# 
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
# 
# 

from math import pi

import numpy as np
import pytest
from Basilisk.simulation import hingedBodyLinearProfiler
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport


[docs] @pytest.mark.parametrize("startTime, endTime, startTheta, endTheta", [ (macros.sec2nano(1), macros.sec2nano(2), 0, pi/180) ]) def test_hingedBodyLinearProfiler(show_plots, startTime, endTime, startTheta, endTheta): r""" **Validation Test Description** For a given deployment, checks that the theta before, during, and after deployment are correct. **Test Parameters** Discuss the test parameters used. Args: startTime (uint64_t): starting time in nanoseconds endTime (uint64_t): ending time in nanoseconds startTheta (double): starting angle of deployment in radians endTheta (double): ending angle of deployment in radians **Description of Variables Being Tested** For a deployment from 0 to 1 degree, starting at 1 second and ending at 2 seconds into the simulation, checks that the angle and angle rates are as expected before, during, and after deployment. Before deployment, theta should be 0 and ``thetaDot`` 0. During deployment, ``thetaDot`` should be 1 degree per second, with theta varying linearly. After deployment, theta should be 1 degree and ``thetaDot`` 0. """ [testResults, testMessage] = hingedBodyLinearProfilerTestFunction(show_plots, startTime, endTime, startTheta, endTheta) assert testResults < 1, testMessage
[docs] def hingedBodyLinearProfilerTestFunction(show_plots, startTime, endTime, startTheta, endTheta): """Test method""" testFailCount = 0 testMessages = [] unitTaskName = "unitTask" unitProcessName = "TestProcess" # accuracy to which double values compared accuracy = 1e-12 unitTestSim = SimulationBaseClass.SimBaseClass() testProcessRate = macros.sec2nano(0.5) testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # setup module to be tested module = hingedBodyLinearProfiler.HingedBodyLinearProfiler() module.ModelTag = "hingedBodyLinearProfilerTag" unitTestSim.AddModelToTask(unitTaskName, module) module.startTime = startTime module.endTime = endTime module.startTheta = startTheta module.endTheta = endTheta # set up output message recorder objects dataLog = module.hingedRigidBodyReferenceOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) unitTestSim.InitializeSimulation() unitTestSim.ConfigureStopTime(macros.sec2nano(3)) unitTestSim.ExecuteSimulation() # pull module data and make sure it is correct trueTheta = np.array([0, 0, 0, pi/360, pi/180, pi/180, pi/180]); trueThetaDot = np.array([0, 0, pi/180, pi/180, pi/180, 0, 0]) testFailCount, testMessages = unitTestSupport.compareVector(trueTheta, dataLog.theta, accuracy, "theta", testFailCount, testMessages) testFailCount, testMessages = unitTestSupport.compareVector(trueThetaDot, dataLog.thetaDot, accuracy, "thetaDot", testFailCount, testMessages) if testFailCount == 0: print("PASSED: " + module.ModelTag) else: print(testMessages) return [testFailCount, "".join(testMessages)]
if __name__ == "__main__": test_hingedBodyLinearProfiler(False, macros.sec2nano(1), macros.sec2nano(2), 0, pi/180)