Source code for test_unitGroundLocation

# ISC License
#
# Copyright (c) 2016-2017, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import inspect
import os

import numpy as np
import pytest
from Basilisk import __path__
from Basilisk.architecture import messaging
from Basilisk.simulation import groundLocation
from Basilisk.simulation import spacecraft
from Basilisk.utilities import RigidBodyKinematics as rbk
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import orbitalMotion
from Basilisk.utilities import simIncludeGravBody
from Basilisk.utilities import unitTestSupport
from matplotlib import pyplot as plt

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
bskName = 'Basilisk'
splitPath = path.split(bskName)
bskPath = __path__[0]


[docs]def test_range(show_plots): """ Tests whether groundLocation: 1. Computes range correctly by evaluating slantRange; 2. Tests whether elevation is correctly evaluated; 3. Tests whether range limits impact access. 4. Tests whether multiple spacecraft are supported in parallel :return: """ simTaskName = "simTask" simProcessName = "simProcess" scSim = SimulationBaseClass.SimBaseClass() dynProcess = scSim.CreateNewProcess(simProcessName) simulationTime = macros.sec2nano(10.) simulationTimeStep = macros.sec2nano(1.) dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep)) # Initialize new atmosphere and drag model, add them to task groundTarget = groundLocation.GroundLocation() groundTarget.ModelTag = "groundTarget" groundTarget.planetRadius = orbitalMotion.REQ_EARTH * 1000. groundTarget.maximumRange = 100e3 # meters groundTarget.minimumElevation = np.radians(80.) groundTarget.specifyLocation(np.radians(0.), np.radians(0.), 0.) scSim.AddModelToTask(simTaskName, groundTarget) # Write out mock planet rotation, spacecraft position messages sc1_message = messaging.SCStatesMsgPayload() sc1_message.r_BN_N = [orbitalMotion.REQ_EARTH*1e3 + 100e3, 0, 0] # SC1 is in range sc1Msg = messaging.SCStatesMsg().write(sc1_message) sc2_message = messaging.SCStatesMsgPayload() # SC2 is placed inside/outside the visibility cone for the ground station sc2_message.r_BN_N = [orbitalMotion.REQ_EARTH*1e3 + 101e3,0, 0] sc2Msg = messaging.SCStatesMsg().write(sc2_message) sc3_message = messaging.SCStatesMsgPayload() # SC3 is inside the altitude limit, but outside the visibility cone sc3_message.r_BN_N = rbk.euler3(np.radians(11.)).dot(np.array([100e3, 0, 0])) + np.array( [orbitalMotion.REQ_EARTH * 1e3, 0, 0]) sc3Msg = messaging.SCStatesMsg().write(sc3_message) groundTarget.addSpacecraftToModel(sc1Msg) groundTarget.addSpacecraftToModel(sc2Msg) groundTarget.addSpacecraftToModel(sc3Msg) # Log the access indicator numDataPoints = 2 samplingTime = unitTestSupport.samplingTime(simulationTime, simulationTimeStep, numDataPoints) dataLog0 = groundTarget.accessOutMsgs[0].recorder(samplingTime) dataLog1 = groundTarget.accessOutMsgs[1].recorder(samplingTime) dataLog2 = groundTarget.accessOutMsgs[2].recorder(samplingTime) scSim.AddModelToTask(simTaskName, dataLog0) scSim.AddModelToTask(simTaskName, dataLog1) scSim.AddModelToTask(simTaskName, dataLog2) # Run the sim scSim.InitializeSimulation() scSim.ConfigureStopTime(simulationTime) scSim.ExecuteSimulation() # Get the logged data sc1_access = dataLog0.hasAccess sc1_slant = dataLog0.slantRange sc1_elevation = dataLog0.elevation sc2_access = dataLog1.hasAccess sc2_slant = dataLog1.slantRange sc2_elevation = dataLog1.elevation sc3_access = dataLog2.hasAccess sc3_slant = dataLog2.slantRange sc3_elevation = dataLog2.elevation # Compare to expected values accuracy = 1e-8 ref_ranges = [100e3, 101e3, 100e3] ref_elevation = [np.radians(90.), np.radians(90.), np.radians(79.)] ref_access = [1, 0, 0] test_ranges = [sc1_slant[1], sc2_slant[1], sc3_slant[1]] test_elevation = [sc1_elevation[1],sc2_elevation[1],sc3_elevation[1]] test_access = [sc1_access[1],sc2_access[1],sc3_access[1]] range_worked = test_ranges == pytest.approx(ref_ranges, accuracy) elevation_worked = test_elevation == pytest.approx(ref_elevation, accuracy) access_worked = test_access == pytest.approx(ref_access, abs=1e-16) assert (range_worked and elevation_worked and access_worked)
[docs]def test_rotation(show_plots): """ Tests whether groundLocation: 1. Computes the current location based on the initial position and the rotation rate of the planet it is attached to. :return: """ simTime = 1. simTaskName = "simTask" simProcessName = "simProcess" scSim = SimulationBaseClass.SimBaseClass() dynProcess = scSim.CreateNewProcess(simProcessName) simulationTime = macros.sec2nano(simTime) simulationTimeStep = macros.sec2nano(1.) dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep)) # Initialize new atmosphere and drag model, add them to task groundTarget = groundLocation.GroundLocation() groundTarget.ModelTag = "groundTarget" groundTarget.planetRadius = orbitalMotion.REQ_EARTH * 1000. groundTarget.maximumRange = 200e3 # meters groundTarget.minimumElevation = np.radians(10.) groundTarget.specifyLocation(np.radians(0.), np.radians(10.), 0.) scSim.AddModelToTask(simTaskName, groundTarget) # Write out mock planet rotation, spacecraft position messages sc1_message = messaging.SCStatesMsgPayload() sc1_message.r_BN_N = np.array([orbitalMotion.REQ_EARTH*1e3 + 90e3, 0, 0]) # SC1 is in range scMsg = messaging.SCStatesMsg().write(sc1_message) groundTarget.addSpacecraftToModel(scMsg) planet_message = messaging.SpicePlanetStateMsgPayload() planet_message.J20002Pfix = rbk.euler3(np.radians(-10.)).tolist() planetMsg = messaging.SpicePlanetStateMsg().write(planet_message) groundTarget.planetInMsg.subscribeTo(planetMsg) # Log the access indicator numDataPoints = 2 samplingTime = unitTestSupport.samplingTime(simulationTime, simulationTimeStep, numDataPoints) dataLog = groundTarget.accessOutMsgs[0].recorder(samplingTime) scSim.AddModelToTask(simTaskName, dataLog) # Run the sim scSim.InitializeSimulation() scSim.ConfigureStopTime(simulationTime) scSim.ExecuteSimulation() # Get the logged data sc1_access = dataLog.hasAccess sc1_slant = dataLog.slantRange sc1_elevation = dataLog.elevation sc1_azimuth = dataLog.azimuth # Compare to expected values accuracy = 1e-8 ref_ranges = [90e3] ref_elevation = [np.radians(90.)] ref_access = [1] test_ranges = [sc1_slant[1]] test_elevation = [sc1_elevation[1]] test_access = [sc1_access[1]] range_worked = test_ranges == pytest.approx(ref_ranges, accuracy) elevation_worked = test_elevation == pytest.approx(ref_elevation, accuracy) access_worked = test_access == pytest.approx(ref_access, abs=1e-16) assert (range_worked and elevation_worked and access_worked)
[docs]def test_AzElR_rates(): """ Tests that the Az,El,range rates are correct by using 1-step Euler integration :return: """ simTaskName = "simTask" simProcessName = "simProcess" scSim = SimulationBaseClass.SimBaseClass() dynProcess = scSim.CreateNewProcess(simProcessName) dt = 1.0 simulationTimeStep = macros.sec2nano(dt) simulationTime = simulationTimeStep dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep)) gravFactory = simIncludeGravBody.gravBodyFactory() planet = gravFactory.createEarth() mu = planet.mu planet.isCentralBody = True timeInitString = '2021 MAY 04 06:47:48.965 (UTC)' gravFactory.createSpiceInterface(bskPath + '/supportData/EphemerisData/' , timeInitString ) gravFactory.spiceObject.zeroBase = 'Earth' scSim.AddModelToTask(simTaskName, gravFactory.spiceObject, -1) scObject = spacecraft.Spacecraft() scObject.gravField.gravBodies = spacecraft.GravBodyVector(list(gravFactory.gravBodies.values())) scSim.AddModelToTask(simTaskName, scObject) oe = orbitalMotion.ClassicElements() r_sc = planet.radEquator + 100*1E3 oe.a = r_sc oe.e = 0.00001 oe.i = 53.0*macros.D2R oe.Omega = 115.0*macros.D2R oe.omega = 5.0*macros.D2R oe.f = 75.*macros.D2R rN, vN = orbitalMotion.elem2rv(mu, oe) scObject.hub.r_CN_NInit = rN scObject.hub.v_CN_NInit = vN groundStation = groundLocation.GroundLocation() groundStation.planetRadius = planet.radEquator groundStation.specifyLocation(np.radians(40.009971), np.radians(-105.243895), 1624) groundStation.planetInMsg.subscribeTo(gravFactory.spiceObject.planetStateOutMsgs[0]) groundStation.minimumElevation = np.radians(60.) groundStation.addSpacecraftToModel(scObject.scStateOutMsg) scSim.AddModelToTask(simTaskName, groundStation) # Log the Az,El,R and rates info numDataPoints = 2 samplingTime = unitTestSupport.samplingTime(simulationTime, simulationTimeStep, numDataPoints) dataLog = groundStation.accessOutMsgs[0].recorder(samplingTime) scSim.AddModelToTask(simTaskName, dataLog) # Run the sim scSim.InitializeSimulation() scSim.ConfigureStopTime(simulationTime) scSim.ExecuteSimulation() # Get logged data sc_range = dataLog.slantRange sc_elevation = dataLog.elevation sc_azimuth = dataLog.azimuth sc_range_rate = dataLog.range_dot sc_el_rate = dataLog.el_dot sc_az_rate = dataLog.az_dot # Euler integration sc_Euler_range = sc_range[0] + sc_range_rate[0]*dt sc_Euler_elev = sc_elevation[0] + sc_el_rate[0]*dt sc_Euler_azimuth = sc_azimuth[0] + sc_az_rate[0]*dt range_rate_worked = sc_range[1] == pytest.approx(sc_Euler_range, rel=1e-5) el_rate_worked = sc_elevation[1] == pytest.approx(sc_Euler_elev, rel=1e-5) az_rate_worked = sc_azimuth[1] == pytest.approx(sc_Euler_azimuth, rel=1e-5) assert (range_rate_worked and el_rate_worked and az_rate_worked)
[docs]def plot_geometry(groundLocation, scLocations, minimumElevation): """ Plots the location of a ground station, its field of view, and the positions of two spacecraft to verify whether the spacecraft have access to the ground station. :param groundLocation: [3,] : an ECI ground position. :param scLocations: [3,2] : two spacecraft position vectors :param minimumElevation: double : minimum view elevation angle in degrees. :return: """ fig = plt.figure() ax = fig.add_subplot(projection='3d') # draw sphere u, v = np.mgrid[0:2 * np.pi:20j, 0:np.pi:20j] x = orbitalMotion.REQ_EARTH*1000 * np.cos(u) * np.sin(v) y = orbitalMotion.REQ_EARTH*1000 *np.sin(u) * np.sin(v) z = orbitalMotion.REQ_EARTH*1000 *np.cos(v) ax.plot_wireframe(x, y, z, color="g") # draw a point0 ax.scatter(groundLocation[0],groundLocation[1],groundLocation[2], color="r", s=100) # draw a vector for location in scLocations: ax.scatter(location[0],location[1],location[2],color='k',s=100) ax.quiver(groundLocation[0],groundLocation[1],groundLocation[2], location[0],location[1],location[2], length=1.0, normalize=True) #ax.add_artist(a) plt.show()
if __name__ == '__main__': test_rotation(False) # test_range(True)