Source code for test_sunlineEphem

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
#   Unit Test Script
#   Module Name:        sunlineEphem()
#   Author:             John Martin
#   Creation Date:      November 30, 2018
#

import matplotlib.pyplot as plt
import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import sunlineEphem  # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions


# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.


[docs]class DataStore: """Container for developer defined variables to be used in test data post-processing and plotting. Attributes: variableState (list): an example variable to hold test result data. """ def __init__(self): self.variableState = None # replace/add with appropriate variables for test result data storing
[docs] def plotData(self): """All test plotting to be performed here. """ plt.figure(1) # plot a sample variable. plt.plot(self.variableState[:, 0]*macros.NANO2SEC, self.variableState[:, 1], label='Sample Variable') plt.legend(loc='upper left') plt.xlabel('Time [s]') plt.ylabel('Variable Description [unit]') plt.show()
@pytest.fixture(scope="module") def plotFixture(show_plots): dataStore = DataStore() yield dataStore if show_plots: dataStore.plotData() # uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed # @pytest.mark.skipif(conditionstring) # uncomment this line if this test has an expected failure, adjust message as needed # @pytest.mark.xfail(conditionstring) # provide a unique test method name, starting with test_
[docs]def test_module(show_plots): # update "module" in this function name to reflect the module name """Module Unit Test""" # each test method requires a single assert method to be called # pass on the testPlotFixture so that the main test function may set the DataStore attributes [testResults, testMessage] = sunlineEphemTestFunction(show_plots) assert testResults < 1, testMessage
def sunlineEphemTestFunction(show_plots): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container sunlineEphemObj = sunlineEphem.sunlineEphem() sunlineEphemObj.ModelTag = "sunlineEphem" # update python name of test module # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, sunlineEphemObj) # Create input message and size it because the regular creator of that message # is not part of the test. vehAttData = messaging.NavAttMsgPayload() vehPosData = messaging.NavTransMsgPayload() sunData = messaging.EphemerisMsgPayload() # Artificially put sun at the origin. sunData.r_BdyZero_N = [0.0, 0.0, 0.0] vehAttInMsg = messaging.NavAttMsg().write(vehAttData) # Place spacecraft unit length away on each coordinate axis vehAttData.sigma_BN = [0.0, 0.0, 0.0] TestVectors = [[-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, -1.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] estVector = np.zeros((6, 3)) vehPosInMsg = messaging.NavTransMsg() sunDataInMsg = messaging.EphemerisMsg().write(sunData) sunlineEphemObj.sunPositionInMsg.subscribeTo(sunDataInMsg) sunlineEphemObj.scPositionInMsg.subscribeTo(vehPosInMsg) sunlineEphemObj.scAttitudeInMsg.subscribeTo(vehAttInMsg) dataLog = sunlineEphemObj.navStateOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) for i in range(len(TestVectors)): testVec = TestVectors[i] vehPosData.r_BN_N = testVec vehPosInMsg.write(vehPosData) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() estVector[i] = dataLog.vehSunPntBdy[-1] # reset the module to test this functionality sunlineEphemObj.Reset(1) # set the filtered output truth states trueVector = [ [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, -1.0] ] # compare the module results to the truth values accuracy = 1e-12 for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(estVector[i], trueVector[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + sunlineEphemObj.ModelTag + " Module failed sunlineEphem " + " unit test at t=" + str(dataLog.times()[i]*macros.NANO2SEC) + "sec\n") # print out success message if no error were found if testFailCount == 0: print("PASSED: " + sunlineEphemObj.ModelTag) else: print(testMessages) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_module( # update "subModule" in function name False # show_plots )