Source code for test_sunSafePoint


# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.


#
#   Unit Test Script
#   Module Name:        sunSafePoint
#   Author:             Hanspeter Schaub
#   Creation Date:      April 25, 2018
#

import inspect
import os

import numpy as np
import pytest

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))






# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport                  # general support file with common unit test functions
from Basilisk.fswAlgorithms import sunSafePoint                   # import the module that is to be tested
from Basilisk.architecture import messaging
from Basilisk.utilities import macros as mc


# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
#@pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_

# The following 'parametrize' function decorator provides the parameters and expected results for each
#   of the multiple test runs for this test.
[docs]@pytest.mark.parametrize("case", [ (1) # sun is visible, vectors are not aligned ,(2) # sun is not visible, vectors are not aligned ,(3) # sun is visible, vectors are aligned ,(4) # sun is visible, vectors are oppositely aligned ,(5) # sun is visible, vectors are oppositely aligned, and command sc is b1 ,(6) # sun is not visible, vectors are not aligned, no specified omega_RN_B value ,(7) # sun is visible, vectors not aligned, nominal spin rate specified about sun heading vector ]) def test_module(show_plots, case): """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = sunSafePointTestFunction(show_plots, case) assert testResults < 1, testMessage
def sunSafePointTestFunction(show_plots, case): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = mc.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = sunSafePoint.sunSafePoint() module.ModelTag = "sunSafePoint" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) # Initialize the test module configuration data sHat_Cmd_B = np.array([0.0, 0.0 ,1.0]) if case == 5: sHat_Cmd_B = np.array([1.0, 0.0, 0.0]) module.sHatBdyCmd = sHat_Cmd_B module.minUnitMag = 0.1 if case == 2: omega_RN_B_Search = np.array([0.0, 0.0, 0.1]) module.omega_RN_B = omega_RN_B_Search module.smallAngle = 0.01*mc.D2R # Create input messages # inputSunVecData = messaging.NavAttMsgPayload() # Create a structure for the input message sunVec_B = np.array([1.0, 1.0, 0.0]) if (case == 2 or case == 6): # no sun visible, providing a near zero norm direction vector */ sunVec_B = [0.0, module.minUnitMag/2, 0.0] if (case == 3): sunVec_B = sHat_Cmd_B if (case == 4 or case == 5): sunVec_B = -sHat_Cmd_B inputSunVecData.vehSunPntBdy = sunVec_B sunInMsg = messaging.NavAttMsg().write(inputSunVecData) inputIMUData = messaging.NavAttMsgPayload() # Create a structure for the input message omega_BN_B = np.array([0.01, 0.50, -0.2]) inputIMUData.omega_BN_B = omega_BN_B imuInMsg = messaging.NavAttMsg().write(inputIMUData) if case == 7: module.sunAxisSpinRate = 1.5*mc.D2R omega_RN_B_Search = sunVec_B/np.linalg.norm(sunVec_B) * module.sunAxisSpinRate # Setup logging on the test module output message so that we get all the writes to it dataLog = module.attGuidanceOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # connect messages module.sunDirectionInMsg.subscribeTo(sunInMsg) module.imuInMsg.subscribeTo(imuInMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(mc.sec2nano(1.)) # seconds to stop simulation # run the Reset() routine module.Reset(0) # this module reset function needs a time input (in NanoSeconds) # Begin the simulation time run set above unitTestSim.ExecuteSimulation() # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) # # check sigma_BR # # set the filtered output truth states if (case == 1 or case == 7): eHat = np.cross(sunVec_B,sHat_Cmd_B) eHat = eHat / np.linalg.norm(eHat) Phi = np.arccos(np.dot(sunVec_B/np.linalg.norm(sunVec_B),sHat_Cmd_B)) sigmaTrue = eHat * np.tan(Phi/4.0) trueVector = [ sigmaTrue.tolist(), sigmaTrue.tolist(), sigmaTrue.tolist() ] if (case == 2 or case == 3 or case == 6): trueVector = [ [0, 0, 0], [0, 0, 0], [0, 0, 0] ] if (case == 4): eHat = np.cross(sHat_Cmd_B,np.array([1,0,0])) eHat = eHat / np.linalg.norm(eHat) Phi = np.arccos(np.dot(sunVec_B/np.linalg.norm(sunVec_B),sHat_Cmd_B)) sigmaTrue = eHat * np.tan(Phi/4.0) trueVector = [ sigmaTrue.tolist(), sigmaTrue.tolist(), sigmaTrue.tolist() ] if (case == 5): eHat = np.cross(sHat_Cmd_B, np.array([0, 1, 0])) eHat = eHat / np.linalg.norm(eHat) Phi = np.arccos(np.dot(sunVec_B/np.linalg.norm(sunVec_B), sHat_Cmd_B)) sigmaTrue = eHat * np.tan(Phi / 4.0) trueVector = [ sigmaTrue.tolist(), sigmaTrue.tolist(), sigmaTrue.tolist() ] # compare the module results to the truth values accuracy = 1e-12 unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path) for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(dataLog.sigma_BR[i],trueVector[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_BR unit test at t=" + str(dataLog.times()[i] * mc.NANO2SEC) + "sec\n") # # check omega_BR_B # # set the filtered output truth states if (case == 1 or case == 3 or case == 4 or case == 5 or case == 6): trueVector = [ omega_BN_B.tolist(), omega_BN_B.tolist(), omega_BN_B.tolist() ] if (case == 2 or case == 7): trueVector = [ (omega_BN_B - omega_RN_B_Search).tolist(), (omega_BN_B - omega_RN_B_Search).tolist(), (omega_BN_B - omega_RN_B_Search).tolist() ] # compare the module results to the truth values for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(dataLog.omega_BR_B[i],trueVector[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_BR_B unit test at t=" + str(dataLog.times()[i] * mc.NANO2SEC) + "sec\n") # # check omega_RN_B # # set the filtered output truth states if (case == 1 or case == 3 or case == 4 or case == 5 or case == 6): trueVector = [ [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0] ] if (case == 2 or case == 7): trueVector = [ omega_RN_B_Search, omega_RN_B_Search, omega_RN_B_Search ] # compare the module results to the truth values for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(dataLog.omega_RN_B[i],trueVector[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_RN_B unit test at t=" + str(dataLog.times()[i] * mc.NANO2SEC) + "sec\n") # # check domega_RN_B # # set the filtered output truth states trueVector = [ [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0] ] # compare the module results to the truth values for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(dataLog.domega_RN_B[i],trueVector[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed domega_RN_B unit test at t=" + str(dataLog.times()[i] * mc.NANO2SEC) + "sec\n") # print out success message if no error were found snippentName = "passFail" + str(case) if testFailCount == 0: colorText = 'ForestGreen' print("PASSED: " + module.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}' else: colorText = 'Red' print("FAILED: " + module.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}' print(testMessages) unitTestSupport.writeTeXSnippet(snippentName, passedText, path) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": sunSafePointTestFunction(False, 1)