Source code for test_spacecraftPointing


# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.


#
#   Unit Test Script
#   Module Name:        spacecraftPointing
#   Author:             Simon van Overeem
#   Creation Date:      January 7, 2018
#

# The test that is performed in this file checks whether the spacecraftPointing module computes the correct output.
# The inputs of the test are five data points of the chief spacecraft and the deputy spacecraft. From these datapoints
# the orientation of the reference frame with respect to the inertial frame (sigma_R1N) is determined. Furthermore,
# the angular velocity (omega_RN_N) and the angular acceleration (domega_RN_N) are calculated. The outcomes are compared
# to the expected outcome of the module.

import inspect
import os

import pytest

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))

# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport                  # general support file with common unit test functions
from Basilisk.fswAlgorithms import spacecraftPointing           # import the module that is to be tested
from Basilisk.utilities import macros
import numpy as np
from Basilisk.architecture import messaging

[docs]@pytest.mark.parametrize("case", [ (1) # Regular alignment vector ,(2) # Alignment vector aligns with the z-axis of the body frame ]) # uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed # @pytest.mark.skipif(conditionstring) # uncomment this line if this test has an expected failure, adjust message as needed # @pytest.mark.xfail(conditionstring) # provide a unique test method name, starting with test_ def test_spacecraftPointing(show_plots, case): """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = spacecraftPointingTestFunction(show_plots, case) assert testResults < 1, testMessage
def spacecraftPointingTestFunction(show_plots, case): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.1) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = spacecraftPointing.spacecraftPointing() module.ModelTag = "spacecraftPointing" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) # Initialize the test module configuration data module.alignmentVector_B = [1.0, 0.0, 0.0] if (case == 2): module.alignmentVector_B = [0.0, 0.0, 1.0] r_BN_N = [[np.cos(0.0), np.sin(0.0), 0.0], [np.cos(0.001), np.sin(0.001), 0.0], [np.cos(0.002), np.sin(0.002), 0.0], [np.cos(0.003), np.sin(0.003), 0.0], [np.cos(0.004), np.sin(0.004), 0.0]] r_BN_N2 = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] # Create input message and size it because the regular creator of that message # is not part of the test. # # Chief Input Message # chiefInputData = messaging.NavTransMsgPayload() # Create a structure for the input message chiefInputData.r_BN_N = r_BN_N[0] chiefInMsg = messaging.NavTransMsg().write(chiefInputData) # # Deputy Input Message # deputyInputData = messaging.NavTransMsgPayload() # Create a structure for the input message deputyInputData.r_BN_N = r_BN_N2[0] deputyInMsg = messaging.NavTransMsg().write(deputyInputData) # Setup logging on the test module output message so that we get all the writes to it dataLog = module.attReferenceOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # connect messages module.chiefPositionInMsg.subscribeTo(chiefInMsg) module.deputyPositionInMsg.subscribeTo(deputyInMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(macros.sec2nano(0.1)) # seconds to stop simulation # Begin the simulation time run set above # Because it is decided to give the module a set of coordinates for each timestep, a new message has # to be send for each timestep. unitTestSim.ExecuteSimulation() unitTestSim.ConfigureStopTime(macros.sec2nano(0.2)) chiefInputData.r_BN_N = r_BN_N[1] chiefInMsg.write(chiefInputData) deputyInputData.r_BN_N = r_BN_N2[1] deputyInMsg.write(deputyInputData) unitTestSim.ExecuteSimulation() unitTestSim.ConfigureStopTime(macros.sec2nano(0.3)) chiefInputData.r_BN_N = r_BN_N[2] chiefInMsg.write(chiefInputData) deputyInputData.r_BN_N = r_BN_N2[2] deputyInMsg.write(deputyInputData) unitTestSim.ExecuteSimulation() unitTestSim.ConfigureStopTime(macros.sec2nano(0.4)) chiefInputData.r_BN_N = r_BN_N[3] chiefInMsg.write(chiefInputData) deputyInputData.r_BN_N = r_BN_N2[3] deputyInMsg.write(deputyInputData) unitTestSim.ExecuteSimulation() unitTestSim.ConfigureStopTime(macros.sec2nano(0.5)) chiefInputData.r_BN_N = r_BN_N[4] chiefInMsg.write(chiefInputData) deputyInputData.r_BN_N = r_BN_N2[4] deputyInMsg.write(deputyInputData) unitTestSim.ExecuteSimulation() if (case == 1): # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) # # check sigma_RN # moduleOutput = dataLog.sigma_RN # set the filtered output truth states trueVector = [ [0., 0., 0.0], [0., 0., 0.0], [0., 0., 0.0002500000052], [0., 0., 0.0005000000417], [0., 0., 0.0007500001406], [0., 0., 0.001000000333] ] # compare the module results to the truth values accuracy = 1e-12 unitTestSupport.writeTeXSnippet("toleranceValue1", str(accuracy), path) for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_RN unit test at t=" + str(dataLog.times()[i]*macros.NANO2SEC) + "sec\n") # # check omega_RN_N # moduleOutput = dataLog.omega_RN_N # set the filtered output truth states trueVector = [ [0., 0., 0.0], [0., 0., 0.0], [0., 0., 0.01], [0., 0., 0.01], [0., 0., 0.01], [0., 0., 0.01] ] # compare the module results to the truth values # The first three values of the simulation have to be ignored for omega_RN_N. For this reason, comparing from index 3. accuracy = 1e-9 unitTestSupport.writeTeXSnippet("toleranceValue2", str(accuracy), path) for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_RN_N unit test at t=" + str(dataLog.times()[i]*macros.NANO2SEC) + "sec\n") # # check domega_RN_N # moduleOutput = dataLog.domega_RN_N # set the filtered output truth states trueVector = [ [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0] ] # compare the module results to the truth values # The first three values of the simulation have to be ignored for domega_RN_N. For this reason, comparing from index 3. accuracy = 1e-12 unitTestSupport.writeTeXSnippet("toleranceValue3", str(accuracy), path) for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed domega_RN_N unit test at t=" + str(dataLog.times()[i]*macros.NANO2SEC) + "sec\n") elif (case == 2): trueVector = [-1.0/3.0, 1.0/3.0, -1.0/3.0] # compare the module results to the truth values accuracy = 1e-12 unitTestSupport.writeTeXSnippet("toleranceValue4", str(accuracy), path) # check a vector values if not unitTestSupport.isVectorEqual(np.array(module.sigma_BA), np.array(trueVector), accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed, sigma_BA is calculated incorrectly\n") # print out success message if no error were found snippentName = "passFail" + str(case) if testFailCount == 0: colorText = 'ForestGreen' print("PASSED: " + module.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}' else: colorText = 'Red' print("FAILED: " + module.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}' unitTestSupport.writeTeXSnippet(snippentName, passedText, path) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_spacecraftPointing(False, 1)