Source code for test_reactionWheelStateEffector_integrated


# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.


import inspect
import os

import numpy as np
import pytest

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
splitPath = path.split('simulation')

from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions
import matplotlib as mpl
import matplotlib.pyplot as plt
from Basilisk.simulation import spacecraft
from Basilisk.utilities import macros
from Basilisk.simulation import gravityEffector
from Basilisk.utilities import simIncludeRW
from Basilisk.simulation import reactionWheelStateEffector
from Basilisk.architecture import messaging

mpl.rc("figure", figsize=(5.75, 4))

[docs]@pytest.mark.parametrize("useFlag, testCase", [ (False,'BalancedWheels'), (False,'JitterSimple'), (False,'JitterFullyCoupled'), (False, 'BOE'), (False, 'FrictionSpinDown'), (False, 'FrictionSpinUp') ]) # uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed # @pytest.mark.skipif(conditionstring) # uncomment this line if this test has an expected failure, adjust message as needed # @pytest.mark.xfail() # need to update how the RW states are defined # provide a unique test method name, starting with test_ def test_reactionWheelIntegratedTest(show_plots,useFlag,testCase): """Module Unit Test""" [testResults, testMessage] = reactionWheelIntegratedTest(show_plots,useFlag,testCase) assert testResults < 1, testMessage
def reactionWheelIntegratedTest(show_plots,useFlag,testCase): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages scObject = spacecraft.Spacecraft() scObject.ModelTag = "spacecraftBody" unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread stepSize = 0.0001 if testCase == 'BOE': stepSize = 0.1 if testCase == 'FrictionSpinDown' or testCase == 'FrictionSpinUp': stepSize = 0.01 if testCase == 'JitterFullyCoupled': stepSize = 0.00001 testProcessRate = macros.sec2nano(stepSize) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # add RW devices # The clearRWSetup() is critical if the script is to run multiple times rwFactory = simIncludeRW.rwFactory() varMaxMomentum = 100. # Nms if testCase == 'BalancedWheels' or testCase == 'BOE' or testCase == 'FrictionSpinDown' or testCase == 'FrictionSpinUp': varRWModel = reactionWheelStateEffector.BalancedWheels elif testCase == 'JitterSimple': varRWModel = reactionWheelStateEffector.JitterSimple elif testCase == 'JitterFullyCoupled': varRWModel = reactionWheelStateEffector.JitterFullyCoupled if testCase == 'BalancedWheels' or testCase == 'JitterSimple' or testCase == 'JitterFullyCoupled': rwFactory.create( 'Honeywell_HR16' ,[1,0,0] # gsHat_B ,Omega = 500. # RPM ,rWB_B = [0.1,0.,0.] # m ,maxMomentum = varMaxMomentum ,RWModel= varRWModel ) rwFactory.create( 'Honeywell_HR16', [0,1,0] # gsHat_B ,Omega = 200. # RPM ,rWB_B = [0.,0.1,0.] # m ,maxMomentum = varMaxMomentum ,RWModel= varRWModel ) rwFactory.create( 'Honeywell_HR16' ,[0,0,1] # gsHat_B ,Omega = -150. # RPM ,rWB_B = [0.,0.,0.1] # m ,maxMomentum = varMaxMomentum ,RWModel= varRWModel ) if testCase == 'BOE' or testCase == 'FrictionSpinDown' or testCase == 'FrictionSpinUp': initialWheelSpeed = 100. rwCopy1 = rwFactory.create( 'Honeywell_HR16' ,[0,0,1] # gsHat_B ,Omega = initialWheelSpeed # RPM ,rWB_B = [0.0,0.,0.] # m ,maxMomentum = varMaxMomentum ,RWModel= varRWModel ) if testCase == 'FrictionSpinDown' or testCase == 'FrictionSpinUp': rwCopy1.fCoulomb = 0.03 rwCopy1.fStatic = 0.06 rwCopy1.betaStatic = 0.15 rwCopy1.cViscous = 0.001 rwCopy1.omegaLimitCycle = 0.001 rwCopy1.Omega = 15. rwCopy1.gsHat_B = [[np.sqrt(3)/3], [np.sqrt(3)/3], [np.sqrt(3)/3]] rwCopy1.rWB_B = [[0.5],[-0.5],[0.5]] rwCopy2 = rwFactory.create( 'Honeywell_HR16' ,[np.sqrt(3)/3,np.sqrt(3)/3,np.sqrt(3)/3] # gsHat_B ,Omega = -initialWheelSpeed # RPM ,rWB_B = [-0.5,0.5,-0.5] # m ,maxMomentum = varMaxMomentum ,RWModel= varRWModel ) rwCopy2.fCoulomb = 0.03 rwCopy2.fStatic = 0.06 rwCopy2.betaStatic = 0.15 rwCopy2.cViscous = 0.001 rwCopy2.omegaLimitCycle = 0.001 rwCopy2.Omega = -15. if testCase == 'FrictionSpinUp': rwCopy1.Omega = 0.0 rwCopy2.Omega = 0.0 # increase HR16 imbalance for test for key, rw in rwFactory.rwList.items(): rw.U_d *= 1e4 rw.U_s *= 1e4 # create RW object container and tie to spacecraft object rwStateEffector = reactionWheelStateEffector.ReactionWheelStateEffector() rwFactory.addToSpacecraft("ReactionWheels", rwStateEffector, scObject) # set RW torque command cmdArray = messaging.ArrayMotorTorqueMsgPayload() if testCase == 'BalancedWheels' or testCase == 'JitterSimple' or testCase == 'JitterFullyCoupled': cmdArray.motorTorque = [0.20, 0.10, -0.50] # [Nm] if testCase == 'BOE' or testCase == 'FrictionSpinDown': cmdArray.motorTorque = [0.0] # [Nm] if testCase == 'FrictionSpinUp': cmdArray.motorTorque = [0.1, -0.1] cmdMsg = messaging.ArrayMotorTorqueMsg().write(cmdArray) rwStateEffector.rwMotorCmdInMsg.subscribeTo(cmdMsg) # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, rwStateEffector) unitTestSim.AddModelToTask(unitTaskName, scObject) if testCase == 'BalancedWheels' or testCase == 'JitterSimple' or testCase == 'JitterFullyCoupled': unitTestSim.earthGravBody = gravityEffector.GravBodyData() unitTestSim.earthGravBody.planetName = "earth_planet_data" unitTestSim.earthGravBody.mu = 0.3986004415E+15 # meters! unitTestSim.earthGravBody.isCentralBody = True scObject.gravField.gravBodies = spacecraft.GravBodyVector([unitTestSim.earthGravBody]) # log data scDataLog = scObject.scStateOutMsg.recorder() speedDataLog = rwStateEffector.rwSpeedOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, scDataLog) unitTestSim.AddModelToTask(unitTaskName, speedDataLog) # Define initial conditions of the sim if testCase == 'BalancedWheels' or testCase == 'JitterSimple' or testCase == 'JitterFullyCoupled': scObject.hub.r_BcB_B = [[-0.0002], [0.0001], [0.1]] scObject.hub.r_CN_NInit = [[-4020338.690396649], [7490566.741852513], [5248299.211589362]] scObject.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]] scObject.hub.omega_BN_BInit = [[0.08], [0.01], [0.0]] scObject.hub.mHub = 750.0 scObject.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]] scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]] if testCase == 'BOE' or testCase == 'FrictionSpinDown' or testCase == 'FrictionSpinUp': wheelSpeedMax = 6000.0*macros.RPM wheelJs = varMaxMomentum/wheelSpeedMax scObject.hub.mHub = 5.0 I1Hub = 2.0 scObject.hub.IHubPntBc_B = [[2., 0.0, 0.0], [0.0, 2., 0.0], [0.0, 0.0, I1Hub + wheelJs]] scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]] scObject.hub.omega_BN_BInit = [[0.0], [0.0], [0.35]] if testCase == 'FrictionSpinDown' or testCase == 'FrictionSpinUp': scObject.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]] rw0DataLog = rwStateEffector.rwOutMsgs[0].recorder() rw1DataLog = rwStateEffector.rwOutMsgs[1].recorder() unitTestSim.AddModelToTask(unitTaskName, rw0DataLog) unitTestSim.AddModelToTask(unitTaskName, rw1DataLog) scObject.hub.r_CN_NInit = [[0.0], [0.0], [0.0]] scObject.hub.v_CN_NInit = [[0.0], [0.0], [0.0]] scObjectLog = scObject.logger(["totOrbAngMomPntN_N", "totRotAngMomPntC_N", "totOrbEnergy", "totRotEnergy"]) unitTestSim.AddModelToTask(unitTaskName, scObjectLog) unitTestSim.InitializeSimulation() stopTime = 1.0 if testCase == 'BOE': stopTime = 10.0 if testCase == 'FrictionSpinDown' or testCase == 'FrictionSpinUp': stopTime = 100.0 if testCase == 'JitterFullyCoupled': stopTime = 0.1 unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime/2)) unitTestSim.ExecuteSimulation() if testCase == 'BalancedWheels' or testCase == 'JitterSimple' or testCase == 'JitterFullyCoupled': cmdArray.motorTorque = [0.0, 0.0, 0.0] # [Nm] if testCase == 'BOE': motorTorque = 0.2 cmdArray.motorTorque = [motorTorque] cmdMsg.write(cmdArray) unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime)) unitTestSim.ExecuteSimulation() orbAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbAngMomPntN_N) rotAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotAngMomPntC_N) rotEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotEnergy) orbEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbEnergy) posData = scDataLog.r_BN_N sigmaData = scDataLog.sigma_BN omegaData = scDataLog.omega_BN_B if testCase == 'BOE' or testCase == 'FrictionSpinDown' or testCase == 'FrictionSpinUp': wheelSpeeds = speedDataLog.wheelSpeeds[:, 0] if testCase == 'BOE': thetaOut = 4.0*np.arctan(sigmaData[:, 2]) # Find BOE calculations timeBOE = np.array([2.0, 4.0, 6.0, 8.0, 10.0]) timeTorqueOn = 5.0 omegaBOE = np.zeros(5) thetaBOE = np.zeros(5) wheelSpeedBOE = np.zeros(5) for i in range(5): if timeBOE[i] > timeTorqueOn: omegaBOE[i] = scObject.hub.omega_BN_BInit[2][0] - motorTorque/I1Hub*(timeBOE[i]-timeTorqueOn) thetaBOE[i] = scObject.hub.omega_BN_BInit[2][0]*(timeBOE[i]-timeTorqueOn) - 0.5*motorTorque/I1Hub*(timeBOE[i]-timeTorqueOn)**2 + scObject.hub.omega_BN_BInit[2][0]*(timeTorqueOn) wheelSpeedBOE[i] = initialWheelSpeed*macros.RPM + (I1Hub + wheelJs)*motorTorque/(I1Hub*wheelJs)*(timeBOE[i]-timeTorqueOn) else: omegaBOE[i] = scObject.hub.omega_BN_BInit[2][0] wheelSpeedBOE[i] = initialWheelSpeed*macros.RPM thetaBOE[i] = scObject.hub.omega_BN_BInit[2][0]*(timeBOE[i]) if testCase == 'FrictionSpinDown' or testCase == 'FrictionSpinUp': wheelSpeedBeforeInteg1 = rw0DataLog.Omega wheelSpeedBeforeInteg2 = rw1DataLog.Omega frictionTorque1 = rw0DataLog.frictionTorque frictionTorque2 = rw1DataLog.frictionTorque dataPos = posData[-1] dataSigma = sigmaData[-1] if testCase == 'BalancedWheels': truePos = [ [-4.02553766e+06, 7.48712857e+06, 5.24933964e+06] ] trueSigma = [ [1.99853994e-02, 2.45647716e-03, 8.45356279e-06] ] elif testCase == 'JitterSimple': truePos = [ [-4.02553766e+06, 7.48712857e+06, 5.24933964e+06] ] trueSigma = [ [1.98964221e-02, 2.24474932e-03, -5.66618270e-05] ] elif testCase == 'JitterFullyCoupled': truePos = [ [-4.02085866e+06, 7.49022306e+06, 5.24840326e+06] ] trueSigma = [ [1.98708924e-03, 2.26086385e-04, -1.60335529e-05] ] initialOrbAngMom_N = [ [orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]] ] finalOrbAngMom = [ [orbAngMom_N[-1,1], orbAngMom_N[-1,2], orbAngMom_N[-1,3]] ] initialRotAngMom_N = [ [rotAngMom_N[0,1], rotAngMom_N[0,2], rotAngMom_N[0,3]] ] finalRotAngMom = [ [rotAngMom_N[-1,1], rotAngMom_N[-1,2], rotAngMom_N[-1,3]] ] initialOrbEnergy = [ [orbEnergy[0,1]] ] finalOrbEnergy = [ [orbEnergy[-1,1]] ] initialRotEnergy = [ [rotEnergy[int(len(rotEnergy)/2)+1,1]] ] finalRotEnergy = [ [rotEnergy[-1,1]] ] plt.close("all") if testCase == 'BalancedWheels' or testCase == 'JitterFullyCoupled': plt.figure() plt.clf() plt.plot(orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,1] - orbAngMom_N[0,1])/orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,2] - orbAngMom_N[0,2])/orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,3] - orbAngMom_N[0,3])/orbAngMom_N[0,3]) plt.xlabel("Time (s)") plt.ylabel("Relative Difference") unitTestSupport.writeFigureLaTeX("ChangeInOrbitalAngularMomentum" + testCase, "Change in Orbital Angular Momentum " + testCase, plt, r"width=0.8\textwidth", path) plt.figure() plt.clf() plt.plot(orbEnergy[:,0]*1e-9, (orbEnergy[:,1] - orbEnergy[0,1])/orbEnergy[0,1]) plt.xlabel("Time (s)") plt.ylabel("Relative Difference") unitTestSupport.writeFigureLaTeX("ChangeInOrbitalEnergy" + testCase, "Change in Orbital Energy " + testCase, plt, r"width=0.8\textwidth", path) plt.figure() plt.clf() plt.plot(rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,1] - rotAngMom_N[0,1])/rotAngMom_N[0,1], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,2] - rotAngMom_N[0,2])/rotAngMom_N[0,2], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,3] - rotAngMom_N[0,3])/rotAngMom_N[0,3]) plt.xlabel("Time (s)") plt.ylabel("Relative Difference") unitTestSupport.writeFigureLaTeX("ChangeInRotationalAngularMomentum" + testCase, "Change in Rotational Angular Momentum " + testCase, plt, r"width=0.8\textwidth", path) plt.figure() plt.clf() plt.plot(rotEnergy[int(len(rotEnergy)/2)+1:,0]*1e-9, (rotEnergy[int(len(rotEnergy)/2)+1:,1] - rotEnergy[int(len(rotEnergy)/2)+1,1])/rotEnergy[int(len(rotEnergy)/2)+1,1]) plt.xlabel("Time (s)") plt.ylabel("Relative Difference") unitTestSupport.writeFigureLaTeX("ChangeInRotationalEnergy" + testCase, "Change in Rotational Energy " + testCase, plt, r"width=0.8\textwidth", path) if show_plots: plt.show() plt.close('all') if testCase == 'BOE': plt.figure() plt.clf() plt.plot(scDataLog.times()*1e-9, thetaOut, label = 'Basilisk') plt.plot(timeBOE, thetaBOE, 'ro', label='BOE') plt.legend(loc='upper left', numpoints=1) plt.xlabel("Time (s)") plt.ylabel("Theta (rad)") unitTestSupport.writeFigureLaTeX("ReactionWheelBOETheta", "Reaction Wheel BOE Theta", plt, r"width=0.8\textwidth", path) plt.figure() plt.clf() plt.plot(scDataLog.times()*1e-9, omegaData[:,2], label = 'Basilisk') plt.plot(timeBOE, omegaBOE, 'ro', label='BOE') plt.legend(loc='upper right', numpoints=1) plt.xlabel("Time (s)") plt.ylabel("Body Rate (rad/s)") unitTestSupport.writeFigureLaTeX("ReactionWheelBOEBodyRate", "Reaction Wheel BOE Body Rate", plt, r"width=0.8\textwidth", path) plt.figure() plt.clf() plt.plot(scDataLog.times()*1e-9, wheelSpeeds, label = 'Basilisk') plt.plot(timeBOE, wheelSpeedBOE, 'ro', label='BOE') plt.legend(loc ='upper left', numpoints=1) plt.xlabel("Time (s)") plt.ylabel("Wheel Speed (rad/s)") unitTestSupport.writeFigureLaTeX("ReactionWheelBOERWRate", "Reaction Wheel BOE RW Rate", plt, r"width=0.8\textwidth", path) if show_plots: plt.show() plt.close('all') if testCase == 'FrictionSpinDown' or testCase == 'FrictionSpinUp': plt.figure() plt.clf() plt.plot(scDataLog.times()*1e-9, omegaData[:,2], label='Basilisk') plt.xlabel("Time (s)") plt.ylabel("Body Rate (rad/s)") unitTestSupport.writeFigureLaTeX("ReactionWheel" + testCase + "TestBodyRates", "Reaction Wheel " + testCase + " Test Body Rates", plt, r"width=0.8\textwidth", path) plt.figure() plt.clf() plt.plot(speedDataLog.times()*1e-9, wheelSpeeds, label = 'RW 1 Wheel Speed') plt.plot(speedDataLog.times()*1e-9, wheelSpeeds, label = 'RW 2 Wheel Speed') plt.legend(loc='upper right') plt.xlabel("Time (s)") plt.ylabel("Wheel Speed (rad/s)") unitTestSupport.writeFigureLaTeX("ReactionWheel" + testCase + "TestWheelSpeed", "Reaction Wheel " + testCase + " Test Wheel Speed", plt, r"width=0.8\textwidth", path) print(wheelSpeedBeforeInteg1) print(frictionTorque1) plt.figure() plt.clf() plt.plot(wheelSpeedBeforeInteg1, frictionTorque1, label = 'RW 1 Friction Torque') plt.plot(wheelSpeedBeforeInteg2, frictionTorque2, label = 'RW 2 Friction Torque') plt.legend(loc='upper right') plt.xlabel("Wheel Speed (rad/s)") plt.ylabel("Friction Torque (N-m)") axes = plt.gca() plt.xlim([-15, 15]) unitTestSupport.writeFigureLaTeX("ReactionWheel" + testCase + "TestFrictionTorque", "Reaction Wheel " + testCase + " Test Friction Torque", plt, r"width=0.8\textwidth", path) if show_plots: plt.show() plt.close('all') accuracy = 1e-7 if testCase == 'BalancedWheels' or testCase == 'JitterSimple' or testCase == 'JitterFullyCoupled': for i in range(0,len(truePos)): # check a vector values if not unitTestSupport.isArrayEqualRelative(dataPos,truePos[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Reaction Wheel Integrated Test failed pos unit test") for i in range(0,len(trueSigma)): # check a vector values if not unitTestSupport.isArrayEqualRelative(dataSigma,trueSigma[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Reaction Wheel Integrated Test failed attitude unit test") accuracy = 1e-10 if testCase == 'BalancedWheels' or testCase == 'JitterFullyCoupled': for i in range(0,len(initialOrbAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Reaction Wheel Integrated Test failed orbital angular momentum unit test") for i in range(0,len(initialRotAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Reaction Wheel Integrated Test failed rotational angular momentum unit test") for i in range(0,len(initialOrbEnergy)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i],initialOrbEnergy[i],1,accuracy): testFailCount += 1 testMessages.append("FAILED: Reaction Wheel Integrated Test failed orbital energy unit test") for i in range(0,len(initialRotEnergy)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i],initialRotEnergy[i],1,accuracy): testFailCount += 1 testMessages.append("FAILED: Reaction Wheel Integrated Test failed rotational energy unit test") accuracy = 1e-8 if testCase == 'BOE': for i in range(5): if abs((omegaBOE[i] - omegaData[int(timeBOE[i]/stepSize),2])/omegaBOE[i]) > accuracy: testFailCount += 1 testMessages.append("FAILED: Reaction Wheel Integrated Test failed BOE body rates unit test") if abs((thetaBOE[i] - thetaOut[int(timeBOE[i]/stepSize)])/thetaBOE[i]) > accuracy: testFailCount += 1 testMessages.append("FAILED: Reaction Wheel Integrated Test failed BOE theta unit test") if abs((wheelSpeedBOE[i] - wheelSpeeds[int(timeBOE[i]/stepSize)])/wheelSpeedBOE[i]) > accuracy: testFailCount += 1 testMessages.append("FAILED: Reaction Wheel Integrated Test failed BOE wheel speed unit test") if testFailCount == 0: print("PASSED: " + " Reaction Wheel Integrated Sim " + testCase) # print out success message if no errors were found if testCase == 'JitterSimple' and testFailCount == 0: print("PASSED ") colorText = 'ForestGreen' passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}' # Write some snippets for AutoTex snippetName = testCase + 'PassFail' unitTestSupport.writeTeXSnippet(snippetName, passedText, path) elif testCase == 'JitterSimple' and testFailCount > 0: colorText = 'Red' passedText = r'\textcolor{' + colorText + '}{' + "FAILED" + '}' # Write some snippets for AutoTex snippetName = testCase + 'PassFail' unitTestSupport.writeTeXSnippet(snippetName, passedText, path) assert testFailCount < 1, testMessages # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] if __name__ == "__main__": # reactionWheelIntegratedTest(True,True,'BalancedWheels') reactionWheelIntegratedTest(True,True,'BOE')