Source code for test_opNavPoint

#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.


#
#   Copy of the unit test for sunSafe Point adapted to any heading
#   Module Name:        opNavPoint
#   Author:             Thibaud Teil
#   Creation Date:      August 20, 2019
#

import inspect
import os

import numpy as np
import pytest

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))



# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport                  # general support file with common unit test functions
from Basilisk.fswAlgorithms import opNavPoint                   # import the module that is to be tested
from Basilisk.architecture import messaging
from Basilisk.utilities import macros as mc


# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
#@pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_

# The following 'parametrize' function decorator provides the parameters and expected results for each
#   of the multiple test runs for this test.
[docs]@pytest.mark.parametrize("case", [ (1) # target is visible, vectors are not aligned ,(2) # target is not visible, vectors are not aligned ,(3) # target is visible, vectors are aligned ,(4) # target is not visible, search ]) def test_module(show_plots, case): """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = opNavPointTestFunction(show_plots, case) assert testResults < 1, testMessage
def opNavPointTestFunction(show_plots, case): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = mc.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = opNavPoint.opNavPoint() module.ModelTag = "opNavPoint" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) # Initialize the test module configuration data camera_Z = [0.,0.,1.] module.alignAxis_C = camera_Z module.minUnitMag = 0.01 module.smallAngle = 0.01*mc.D2R module.timeOut = 100 # Create input messages # planet_B = [1.,1.,0.] inputOpNavData = messaging.OpNavMsgPayload() # Create a structure for the input message inputOpNavData.r_BN_C = planet_B inputOpNavData.valid = 1 if (case == 2): #No valid measurement inputOpNavData.valid = 0 if (case == 3): #No valid measurement inputOpNavData.r_BN_C = [0.,0.,-1.] if (case == 4): #No valid measurement inputOpNavData.valid = 0 opnavInMsg = messaging.OpNavMsg().write(inputOpNavData) inputIMUData = messaging.NavAttMsgPayload() # Create a structure for the input message omega_BN_B = np.array([0.01, 0.50, -0.2]) inputIMUData.omega_BN_B = omega_BN_B imuInMsg = messaging.NavAttMsg().write(inputIMUData) omega_RN_B_Search = np.array([0.0, 0.0, 0.1]) if (case ==2 or case==4): module.omega_RN_B = omega_RN_B_Search cam = messaging.CameraConfigMsgPayload() # Create a structure for the input message cam.sigma_CB = [0.,0.,0] camInMsg = messaging.CameraConfigMsg().write(cam) # Setup logging on the test module output message so that we get all the writes to it dataLog = module.attGuidanceOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # connect messages module.opnavDataInMsg.subscribeTo(opnavInMsg) module.imuInMsg.subscribeTo(imuInMsg) module.cameraConfigInMsg.subscribeTo(camInMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() unitTestSim.ConfigureStopTime(mc.sec2nano(1.)) # seconds to stop simulation unitTestSim.ExecuteSimulation() # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) # # check sigma_BR # # set the filtered output truth states eHat = np.cross(-np.array(planet_B), np.array(camera_Z)) eHat = eHat / np.linalg.norm(eHat) Phi = np.arccos(np.dot(-np.array(planet_B)/np.linalg.norm(-np.array(planet_B)),np.array(camera_Z))) sigmaTrue = eHat * np.tan(Phi/4.0) trueVector = [ sigmaTrue.tolist(), sigmaTrue.tolist(), sigmaTrue.tolist() ] if (case == 2 or case == 3 or case == 4): trueVector = [ [0, 0, 0], [0, 0, 0], [0, 0, 0] ] # compare the module results to the truth values accuracy = 1e-12 unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path) for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(dataLog.sigma_BR[i],trueVector[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_BR unit test at t=" + str(dataLog.times()[i] * mc.NANO2SEC) + "sec\n") # # check omega_BR_B # # set the filtered output truth states trueVector = [ omega_BN_B.tolist(), omega_BN_B.tolist(), omega_BN_B.tolist() ] if (case == 2 or case==4): trueVector = [ (omega_BN_B - omega_RN_B_Search).tolist(), (omega_BN_B - omega_RN_B_Search).tolist(), (omega_BN_B - omega_RN_B_Search).tolist() ] # compare the module results to the truth values for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(dataLog.omega_BR_B[i],trueVector[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_BR_B unit test at t=" + str(dataLog.times()[i] * mc.NANO2SEC) + "sec\n") # # check omega_RN_B # # set the filtered output truth states trueVector = [ [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0] ] if (case == 2 or case == 4): trueVector = [ omega_RN_B_Search, omega_RN_B_Search, omega_RN_B_Search ] # compare the module results to the truth values for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(dataLog.omega_RN_B[i],trueVector[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_RN_B unit test at t=" + str(dataLog.times()[i] * mc.NANO2SEC) + "sec\n") # # check domega_RN_B # # set the filtered output truth states trueVector = [ [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0] ] # compare the module results to the truth values for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(dataLog.domega_RN_B[i],trueVector[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed domega_RN_B unit test at t=" + str(dataLog.times()[i] * mc.NANO2SEC) + "sec\n") # print out success message if no error were found snippentName = "passFail" + str(case) if testFailCount == 0: colorText = 'ForestGreen' print("PASSED: " + module.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}' else: colorText = 'Red' print("FAILED: " + module.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}' unitTestSupport.writeTeXSnippet(snippentName, passedText, path) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": opNavPointTestFunction(False, 1)