Source code for test_mtbMomentumManagement

#
#  ISC License
#
#  Copyright (c) 2021, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#


#
#   Unit Test Script
#   Module Name:        mtbMomentumManagement
#   Author:             Henry Macanas
#   Creation Date:      02 23, 2021
#
# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.
import numpy as np
from Basilisk.architecture import bskLogging
from Basilisk.architecture import messaging  # import the message definitions
from Basilisk.fswAlgorithms import mtbMomentumManagement  # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions

# CONSTANTS
MAX_EFF_CNT = 36

# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_

[docs]def test_mtbMomentumManagement(): # update "module" in this function name to reflect the module name r""" **Validation Test Description** This script tests that the module returns expected non-zero and zero outputs. **Description of Variables Being Tested** The variables being checked are: variables - ``mtbDipoleCmds[MAX_EFF_CNT]`` - ``motorTorque[MAX_EFF_CNT]`` """ # each test method requires a single assert method to be called # pass on the testPlotFixture so that the main test function may set the DataStore attributes [testResults, testMessage] = mtbMomentumManagementModuleTestFunction() assert testResults < 1, testMessage
def mtbMomentumManagementModuleTestFunction(): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) bskLogging.setDefaultLogLevel(bskLogging.BSK_WARNING) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.01) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = mtbMomentumManagement.mtbMomentumManagement() module.cGain = 0.005 module.wheelSpeedBiases = [0., 0., 0, 0.] module.ModelTag = "mtbMomentumManagement" # update python name of test module unitTestSim.AddModelToTask(unitTaskName, module) # wheelConfigData message (array is ordered c11, c22, c33, c44, ...) rwConfigParams = messaging.RWArrayConfigMsgPayload() beta = 45. * np.pi / 180. rwConfigParams.GsMatrix_B = [0., np.cos(beta), np.sin(beta), 0., np.sin(beta), -np.cos(beta), np.cos(beta), -np.sin(beta), 0., -np.cos(beta), -np.sin(beta), 0.] rwConfigParams.JsList = [0.002, 0.002, 0.002, 0.002] rwConfigParams.numRW = 4 rwParamsInMsg = messaging.RWArrayConfigMsg().write(rwConfigParams) # mtbConfigData message (array is ordered c11, c22, c33, c44, ...) mtbConfigParams = messaging.MTBArrayConfigMsgPayload() mtbConfigParams.numMTB = 3 # row major toque bar alignments mtbConfigParams.GtMatrix_B = [ 1., 0., 0., 0., 1., 0., 0., 0., 1. ] mtbConfigParams.maxMtbDipoles = [10.]*mtbConfigParams.numMTB mtbParamsInMsg = messaging.MTBArrayConfigMsg().write(mtbConfigParams) # TAMSensorBodyMsg message (leads to non-invertible matrix) tamSensorBodyInMsgContainer = messaging.TAMSensorBodyMsgPayload() tamSensorBodyInMsgContainer.tam_B = [ 5E3 * 0.03782347, 5E3 * 0.49170516, 5E3 * -0.8699399] tamSensorBodyInMsg = messaging.TAMSensorBodyMsg().write(tamSensorBodyInMsgContainer) # rwSpeeds message rwSpeedsInMsgContainer = messaging.RWSpeedMsgPayload() rwSpeedsInMsgContainer.wheelSpeeds = [100., 200., 300., 400.] rwSpeedsInMsg = messaging.RWSpeedMsg().write(rwSpeedsInMsgContainer) # attControl message rwMotorTorqueInMsgContainer = messaging.ArrayMotorTorqueMsgPayload() rwMotorTorqueInMsgContainer.motorTorque = [0., 0., 0., 0.] rwMotorTorqueInMsg = messaging.ArrayMotorTorqueMsg().write(rwMotorTorqueInMsgContainer) # Setup logging on the test module output message so that we get all the writes to it resultMtbCmdOutMsg = module.mtbCmdOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, resultMtbCmdOutMsg) resultRwMotorTorqueOutMsg = module.rwMotorTorqueOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, resultRwMotorTorqueOutMsg) # connect the message interfaces module.rwParamsInMsg.subscribeTo(rwParamsInMsg) module.mtbParamsInMsg.subscribeTo(mtbParamsInMsg) module.tamSensorBodyInMsg.subscribeTo(tamSensorBodyInMsg) module.rwSpeedsInMsg.subscribeTo(rwSpeedsInMsg) module.rwMotorTorqueInMsg.subscribeTo(rwMotorTorqueInMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(macros.sec2nano(0.0)) # seconds to stop simulation accuracy = 1E-8 ''' TEST 0: Check that mtbDipoleCmds and are non-zero. ''' unitTestSim.InitializeSimulation() unitTestSim.ExecuteSimulation() testFailCount, testMessages = unitTestSupport.compareVector([0., 0., 0.], resultMtbCmdOutMsg.mtbDipoleCmds[0][0:3], accuracy, "tauMtbRequestOutMsg", testFailCount, testMessages, ExpectedResult=0) testFailCount, testMessages = unitTestSupport.compareVector([0., 0., 0., 0.], resultRwMotorTorqueOutMsg.motorTorque[0][0:4], accuracy, "rwMotorTorqueOutMsg", testFailCount, testMessages, ExpectedResult=0) ''' TEST 1: Check that the mtbDipoleCmds are zero and that the resulting torque on the body is zero when the b field is zero. ''' tamSensorBodyInMsgContainer.tam_B = [0., 0., 0.] tamSensorBodyInMsg = messaging.TAMSensorBodyMsg().write(tamSensorBodyInMsgContainer) module.tamSensorBodyInMsg.subscribeTo(tamSensorBodyInMsg) unitTestSim.InitializeSimulation() unitTestSim.ExecuteSimulation() testFailCount, testMessages = unitTestSupport.compareVector([0., 0., 0.], resultMtbCmdOutMsg.mtbDipoleCmds[0][0:3], accuracy, "tauMtbRequestOutMsg", testFailCount, testMessages, ExpectedResult=1) Gs = np.array(rwConfigParams.GsMatrix_B[0:12]).reshape(4, 3).T tauBody = Gs @ np.array(resultRwMotorTorqueOutMsg.motorTorque[0][0:4]) testFailCount, testMessages = unitTestSupport.compareVector([0., 0., 0.], tauBody, accuracy, "rwMotorTorqueOutMsg", testFailCount, testMessages, ExpectedResult=1) # reset the module to test this functionality module.Reset(0) # this module reset function needs a time input (in NanoSeconds) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found print("fail count", testFailCount) return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_mtbMomentumManagement()