Source code for test_mtbFeedforward


#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#


#
#   Unit Test Script
#   Module Name:        mtbFeedforward
#   Author:             Henry Macanas
#   Creation Date:      06 18, 2021
#
# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.
import numpy as np
from Basilisk.architecture import bskLogging
from Basilisk.architecture import messaging  # import the message definitions
from Basilisk.fswAlgorithms import mtbFeedforward  # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions

accuracy = 1E-12

# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_

[docs]def test_mtbFeedforward_module(): # update "module" in this function name to reflect the module name r""" **Validation Test Description** This script tests that the torqueRequestBody vector is computed as expected and that the algorithm doesn't fail when given inputs with a value of zero. **Description of Variables Being Tested** In this file we are checking the values of the output message variable: - ``torqueRequestBody`` """ # each test method requires a single assert method to be called # pass on the testPlotFixture so that the main test function may set the DataStore attributes [testResults, testMessage] = mtbFeedforwardModuleTestFunction() assert testResults < 1, testMessage
def mtbFeedforwardModuleTestFunction(): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) bskLogging.setDefaultLogLevel(bskLogging.BSK_WARNING) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.01) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Initialize module under test's config message and add module to runtime call list module = mtbFeedforward.mtbFeedforward() module.ModelTag = "mrpFeedback" # update python name of test module unitTestSim.AddModelToTask(unitTaskName, module) # Initialize CmdTorqueBodyMsg vehControlInMsgContainer = messaging.CmdTorqueBodyMsgPayload() vehControlInMsgContainer.torqueRequestBody = [0., 0., 0.] vehControlInMsg = messaging.CmdTorqueBodyMsg().write(vehControlInMsgContainer) # Initialize DipoleRequestBodyMsg dipoleRequestMtbInMsgContainer = messaging.MTBCmdMsgPayload() dipoleRequestMtbInMsgContainer.mtbDipoleCmds = [1., 2., 3.] dipoleRequestMtbInMsg = messaging.MTBCmdMsg().write(dipoleRequestMtbInMsgContainer) # Initialize TAMSensorBodyMsg tamSensorBodyInMsgContainer = messaging.TAMSensorBodyMsgPayload() tamSensorBodyInMsgContainer.tam_B = [ 1E-5, -3E-5, 5E-5] tamSensorBodyInMsg = messaging.TAMSensorBodyMsg().write(tamSensorBodyInMsgContainer) # Initialize MTBArrayConfigMsg mtbArrayConfigParamsInMsgContainer = messaging.MTBArrayConfigMsgPayload() mtbArrayConfigParamsInMsgContainer.numMTB = 3 mtbArrayConfigParamsInMsgContainer.maxMtbDipoles = [1E3, 1E3, 1E3] mtbArrayConfigParamsInMsgContainer.GtMatrix_B = [1., 0., 0., 0., 1., 0., 0., 0., 1.] mtbArrayConfigParamsInMsg = messaging.MTBArrayConfigMsg().write(mtbArrayConfigParamsInMsgContainer) # Setup logging on the test module output message so that we get all the writes to it resultVehControlOutMsg = module.vehControlOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, resultVehControlOutMsg) # connect the message interfaces module.vehControlInMsg.subscribeTo(vehControlInMsg) module.dipoleRequestMtbInMsg.subscribeTo(dipoleRequestMtbInMsg) module.tamSensorBodyInMsg.subscribeTo(tamSensorBodyInMsg) module.mtbArrayConfigParamsInMsg.subscribeTo(mtbArrayConfigParamsInMsg) # Set the simulation time. unitTestSim.ConfigureStopTime(macros.sec2nano(0.0)) # seconds to stop simulation unitTestSim.InitializeSimulation() ''' TEST 1: Check that dipoles are non-zero expected value. ''' unitTestSim.ExecuteSimulation() m = np.array(dipoleRequestMtbInMsgContainer.mtbDipoleCmds[0:3]) b = np.array(tamSensorBodyInMsgContainer.tam_B) expectedTorque = -np.cross(m, b) testFailCount, testMessages = unitTestSupport.compareVector(expectedTorque, resultVehControlOutMsg.torqueRequestBody[0], accuracy, "torqueRequestBody", testFailCount, testMessages) ''' TEST 2: Check that torqueRequestBody is zero when b field is zero. ''' tamSensorBodyInMsgContainer.tam_B = [0., 0., 0.] tamSensorBodyInMsg = messaging.TAMSensorBodyMsg().write(tamSensorBodyInMsgContainer) module.tamSensorBodyInMsg.subscribeTo(tamSensorBodyInMsg) unitTestSim.InitializeSimulation() unitTestSim.ExecuteSimulation() expectedTorque = [0., 0., 0.] testFailCount, testMessages = unitTestSupport.compareVector(expectedTorque, resultVehControlOutMsg.torqueRequestBody[0], accuracy, "torqueRequestBody", testFailCount, testMessages) ''' TEST 3: Check that torqueRequestBody is zero when dipoles are zero. ''' tamSensorBodyInMsgContainer.tam_B = [1E-5, -3E-5, 5E-5] tamSensorBodyInMsg = messaging.TAMSensorBodyMsg().write(tamSensorBodyInMsgContainer) module.tamSensorBodyInMsg.subscribeTo(tamSensorBodyInMsg) dipoleRequestMtbInMsgContainer.mtbDipoleCmds = [0., 0., 0.] dipoleRequestMtbInMsg = messaging.MTBCmdMsg().write(dipoleRequestMtbInMsgContainer) module.dipoleRequestMtbInMsg.subscribeTo(dipoleRequestMtbInMsg) unitTestSim.InitializeSimulation() unitTestSim.ExecuteSimulation() expectedTorque = [0., 0., 0.] testFailCount, testMessages = unitTestSupport.compareVector(expectedTorque, resultVehControlOutMsg.torqueRequestBody[0], accuracy, "torqueRequestBody", testFailCount, testMessages) ''' TEST 4: Check that torqueRequestBody is non-zero expected value with non-trivial Gt matrix. ''' dipoleRequestMtbInMsgContainer.mtbDipoleCmds = [7., -3.] dipoleRequestMtbInMsg = messaging.MTBCmdMsg().write(dipoleRequestMtbInMsgContainer) module.dipoleRequestMtbInMsg.subscribeTo(dipoleRequestMtbInMsg) beta = 45. * np.pi / 180. Gt = np.array([[np.cos(beta), -np.sin(beta)],[np.sin(beta), np.cos(beta)], [0., 0.]]) mtbArrayConfigParamsInMsgContainer.numMTB = 2 mtbArrayConfigParamsInMsgContainer.GtMatrix_B = [Gt[0, 0], Gt[0, 1], Gt[1, 0], Gt[1, 1], Gt[2, 0], Gt[2, 1]] mtbArrayConfigParamsInMsg = messaging.MTBArrayConfigMsg().write(mtbArrayConfigParamsInMsgContainer) module.mtbArrayConfigParamsInMsg.subscribeTo(mtbArrayConfigParamsInMsg) unitTestSim.InitializeSimulation() unitTestSim.ExecuteSimulation() m = Gt @ np.array(dipoleRequestMtbInMsgContainer.mtbDipoleCmds[0:2]) b = np.array(tamSensorBodyInMsgContainer.tam_B) expectedTorque = -np.cross(m, b) testFailCount, testMessages = unitTestSupport.compareVector(expectedTorque, resultVehControlOutMsg.torqueRequestBody[0], accuracy, "torqueRequestBody", testFailCount, testMessages) print("Accuracy used: " + str(accuracy)) if testFailCount == 0: print("PASSED: mtbFeedforward unit test") else: print("Failed: mtbFeedforward unit test") return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_mtbFeedforward_module()