Source code for test_msiseAtmosphere


# ISC License
#
# Copyright (c) 2016-2017, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.



#
# Basilisk Scenario Script and Integrated Test
#
# Purpose:  Test the validity of a simple exponential atmosphere model.
# Author:   Andrew Harris
# Creation Date:  Jan 18, 2017
#

import inspect
import os

import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.simulation import msisAtmosphere
# import simulation related support
from Basilisk.simulation import spacecraft
# import general simulation support files
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import orbitalMotion
from Basilisk.utilities import simIncludeGravBody
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
bskName = 'Basilisk'
splitPath = path.split(bskName)


# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(True, reason="Previously set sim parameters are not consistent with new formulation\n")

# The following 'parametrize' function decorator provides the parameters and expected results for each
#   of the multiple test runs for this test.
[docs]@pytest.mark.parametrize("orbitType", ["LPO", "LTO"]) @pytest.mark.parametrize("setEpoch", ["Default", "Direct", "Msg"]) # provide a unique test method name, starting with test_ def test_scenarioMsisAtmosphereOrbit(show_plots, orbitType, setEpoch): """This function is called by the py.test environment.""" # each test method requires a single assert method to be called showVal = False [testResults, testMessage] = run(showVal, orbitType, setEpoch) assert testResults < 1, testMessage
[docs]def run(show_plots, orbitCase, setEpoch): """Call this routine directly to run the script.""" testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages # # From here on there scenario python code is found. Above this line the code is to setup a # unitTest environment. The above code is not critical if learning how to code BSK. # # Create simulation variable names simTaskName = "simTask" simProcessName = "simProcess" # Create a sim module as an empty container scSim = SimulationBaseClass.SimBaseClass() # create the simulation process dynProcess = scSim.CreateNewProcess(simProcessName) # create the dynamics task and specify the integration update time simulationTimeStep = macros.sec2nano(10.) dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep)) # Initialize new atmosphere and drag model, add them to task newAtmo = msisAtmosphere.MsisAtmosphere() atmoTaskName = "atmosphere" newAtmo.ModelTag = "MsisAtmo" if setEpoch == "Msg": epochMsg = unitTestSupport.timeStringToGregorianUTCMsg('2019 Jan 01 00:00:00.00 (UTC)') newAtmo.epochInMsg.subscribeTo(epochMsg) # setting epoch day of year info deliberately to a false value. The epoch msg info should be used newAtmo.epochDoy = 10 elif setEpoch == "Direct": newAtmo.epochDoy = 1 # setting epoch day of year info directly dynProcess.addTask(scSim.CreateNewTask(atmoTaskName, simulationTimeStep)) scSim.AddModelToTask(atmoTaskName, newAtmo) # initialize spacecraft object and set properties scObject = spacecraft.Spacecraft() scObject.ModelTag = "spacecraftBody" # add spacecraft object to the simulation process scSim.AddModelToTask(simTaskName, scObject) # clear prior gravitational body and SPICE setup definitions gravFactory = simIncludeGravBody.gravBodyFactory() newAtmo.addSpacecraftToModel(scObject.scStateOutMsg) planet = gravFactory.createEarth() planet.isCentralBody = True # ensure this is the central gravitational body mu = planet.mu # attach gravity model to spacecraft scObject.gravField.gravBodies = spacecraft.GravBodyVector(list(gravFactory.gravBodies.values())) # setup orbit and simulation time oe = orbitalMotion.ClassicElements() r_eq = planet.radEquator if orbitCase == "LPO": orbAltMin = 100.0*1000.0 orbAltMax = orbAltMin elif orbitCase == "LTO": orbAltMin = 100.*1000.0 orbAltMax = 100.0 * 1000.0 rMin = r_eq + orbAltMin rMax = r_eq + orbAltMax oe.a = (rMin+rMax)/2.0 oe.e = 1.0 - rMin/oe.a oe.i = 0.0*macros.D2R oe.Omega = 0.0*macros.D2R oe.omega = 0.0*macros.D2R oe.f = 0.0*macros.D2R rN, vN = orbitalMotion.elem2rv(mu, oe) oe = orbitalMotion.rv2elem(mu, rN, vN) # this stores consistent initial orbit elements # with circular or equatorial orbit, some angles are # arbitrary # set the simulation time n = np.sqrt(mu/oe.a/oe.a/oe.a) P = 2.*np.pi/n simulationTime = macros.sec2nano(0.002*P) # # Setup data logging before the simulation is initialized # sw_msg_names = [ "ap_24_0", "ap_3_0", "ap_3_-3", "ap_3_-6", "ap_3_-9", "ap_3_-12", "ap_3_-15", "ap_3_-18", "ap_3_-21", "ap_3_-24", "ap_3_-27", "ap_3_-30", "ap_3_-33", "ap_3_-36", "ap_3_-39", "ap_3_-42", "ap_3_-45", "ap_3_-48", "ap_3_-51", "ap_3_-54", "ap_3_-57", "f107_1944_0", "f107_24_-24" ] swMsgList = [] for c in range(len(sw_msg_names)): swMsgData = messaging.SwDataMsgPayload() swMsgData.dataValue = 0 swMsgList.append(messaging.SwDataMsg().write(swMsgData)) newAtmo.swDataInMsgs[c].subscribeTo(swMsgList[-1]) dataLog = scObject.scStateOutMsg.recorder() denLog = newAtmo.envOutMsgs[0].recorder() scSim.AddModelToTask(simTaskName, dataLog) scSim.AddModelToTask(simTaskName, denLog) # # initialize Spacecraft States with the initialization variables # scObject.hub.r_CN_NInit = rN # m - r_CN_N scObject.hub.v_CN_NInit = vN # m - v_CN_N # # initialize Simulation # scSim.InitializeSimulation() # # configure a simulation stop time and execute the simulation run # scSim.ConfigureStopTime(simulationTime) scSim.ExecuteSimulation() # # retrieve the logged data # posData = dataLog.r_BN_N velData = dataLog.v_BN_N densData = denLog.neutralDensity tempData = denLog.localTemp np.set_printoptions(precision=16) # Compare to expected values refAtmoData = np.loadtxt(path + '/truthOutputs.txt') accuracy = 1e-8 unitTestSupport.writeTeXSnippet("unitTestToleranceValue", str(accuracy), path) # Test atmospheric density calculation; note that refAtmoData is in g/cm^3, # and must be adjusted by a factor of 1e-3 to match kg/m^3 print(densData[-1]) print(refAtmoData[5]*1000) if np.testing.assert_allclose(densData[-1], refAtmoData[5]*1000., atol=accuracy): testFailCount += 1 testMessages.append("FAILED: NRLMSISE-00 failed density unit test with a value difference of "+str(densData[0]-refAtmoData[5]*1000)) print(tempData[-1]) print(refAtmoData[-1]) if np.testing.assert_allclose(tempData[-1], refAtmoData[-1], atol=accuracy): testFailCount += 1 testMessages.append( "FAILED: NRLMSISE-00 failed temperature unit test with a value difference of "+str(tempData[-1]-refAtmoData[-1])) snippentName = "unitTestPassFail" + str(orbitCase) + str(setEpoch) if testFailCount == 0: colorText = 'ForestGreen' print("PASSED: " + newAtmo.ModelTag) passedText = '\\textcolor{' + colorText + '}{' + "PASSED" + '}' else: colorText = 'Red' print("Failed: " + newAtmo.ModelTag) passedText = '\\textcolor{' + colorText + '}{' + "Failed" + '}' print(testMessages) unitTestSupport.writeTeXSnippet(snippentName, passedText, path) return [testFailCount, ''.join(testMessages)]
if __name__ == '__main__': run(True, "LPO", # orbitCase "Msg") # setEpoch