Source code for test_mass_depletion

# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import inspect
import os
import pytest

import matplotlib.pyplot as plt
from Basilisk.architecture import messaging
from Basilisk.simulation import fuelTank
from Basilisk.simulation import gravityEffector
from Basilisk.simulation import spacecraft
from Basilisk.simulation import thrusterDynamicEffector, thrusterStateEffector
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import simIncludeThruster
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))


# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_
[docs]@pytest.mark.parametrize("thrusterType", [ "dynamicEffector", "stateEffector" ]) def test_massDepletionTest(show_plots, thrusterType): """Module Unit Test""" [testResults, testMessage] = massDepletionTest(show_plots, thrusterType) assert testResults < 1, testMessage
# @pytest.mark.xfail #Currently not sure if this is valid or not
[docs]def massDepletionTest(show_plots, thrusterType): """Module Unit Test""" # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages scObject = spacecraft.Spacecraft() scObject.ModelTag = "spacecraftBody" unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.1) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # add thruster devices thFactory = simIncludeThruster.thrusterFactory() thFactory.create( 'TEST_Thruster', [1, 0, 0], # location in B-frame [0, 1, 0] # direction in B-frame ) # create thruster object container and tie to spacecraft object if thrusterType == "dynamicEffector": thrustersEffector = thrusterDynamicEffector.ThrusterDynamicEffector() elif thrusterType == "stateEffector": thrustersEffector = thrusterStateEffector.ThrusterStateEffector() else: print("Invalid thruster type.") return thFactory.addToSpacecraft("Thrusters", thrustersEffector, scObject) unitTestSim.fuelTankStateEffector = fuelTank.FuelTank() unitTestSim.fuelTankStateEffector.setTankModel(fuelTank.TANK_MODEL_CONSTANT_VOLUME) tankModel = fuelTank.cvar.FuelTankModelConstantVolume tankModel.propMassInit = 40.0 tankModel.r_TcT_TInit = [[0.0], [0.0], [0.0]] unitTestSim.fuelTankStateEffector.r_TB_B = [[0.0], [0.0], [0.0]] tankModel.radiusTankInit = 46.0 / 2.0 / 3.2808399 / 12.0 # Add tank scObject.addStateEffector(unitTestSim.fuelTankStateEffector) unitTestSim.fuelTankStateEffector.addThrusterSet(thrustersEffector) # set thruster commands ThrustMessage = messaging.THRArrayOnTimeCmdMsgPayload() ThrustMessage.OnTimeRequest = [9.9] thrCmdMsg = messaging.THRArrayOnTimeCmdMsg().write(ThrustMessage) thrustersEffector.cmdsInMsg.subscribeTo(thrCmdMsg) # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, unitTestSim.fuelTankStateEffector) unitTestSim.AddModelToTask(unitTaskName, thrustersEffector) unitTestSim.AddModelToTask(unitTaskName, scObject) unitTestSim.earthGravBody = gravityEffector.GravBodyData() unitTestSim.earthGravBody.planetName = "earth_planet_data" unitTestSim.earthGravBody.mu = 0.3986004415E+15 # meters! unitTestSim.earthGravBody.isCentralBody = True scObject.gravField.gravBodies = spacecraft.GravBodyVector([unitTestSim.earthGravBody]) dataLog = scObject.scStateOutMsg.recorder() fuelLog = unitTestSim.fuelTankStateEffector.fuelTankOutMsg.recorder() thrLog = thrustersEffector.thrusterOutMsgs[0].recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) unitTestSim.AddModelToTask(unitTaskName, fuelLog) unitTestSim.AddModelToTask(unitTaskName, thrLog) scObject.hub.mHub = 750.0 scObject.hub.r_BcB_B = [[0.0], [0.0], [0.0]] scObject.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]] scObject.hub.r_CN_NInit = [[-4020338.690396649], [7490566.741852513], [5248299.211589362]] scObject.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]] scObject.hub.sigma_BNInit = [[0.1], [0.2], [-0.3]] scObject.hub.omega_BN_BInit = [[0.001], [-0.01], [0.03]] scObjectLog = scObject.logger(["totOrbAngMomPntN_N", "totRotAngMomPntC_N", "totRotEnergy"]) unitTestSim.AddModelToTask(unitTaskName, scObjectLog) unitTestSim.InitializeSimulation() posRef = scObject.dynManager.getStateObject("hubPosition") sigmaRef = scObject.dynManager.getStateObject("hubSigma") stopTime = 60.0 * 10.0 unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime)) unitTestSim.ExecuteSimulation() orbAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbAngMomPntN_N) rotAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotAngMomPntC_N) rotEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotEnergy) thrust = thrLog.thrustForce_B thrustPercentage = thrLog.thrustFactor fuelMass = fuelLog.fuelMass fuelMassDot = fuelLog.fuelMassDot plt.close("all") plt.figure(1) plt.plot(orbAngMom_N[:, 0] * 1e-9, orbAngMom_N[:, 1] - orbAngMom_N[0, 1], orbAngMom_N[:, 0] * 1e-9, orbAngMom_N[:, 2] - orbAngMom_N[0, 2], orbAngMom_N[:, 0] * 1e-9, orbAngMom_N[:, 3] - orbAngMom_N[0, 3]) plt.title("Change in Orbital Angular Momentum") plt.figure(2) plt.plot(rotAngMom_N[:, 0] * 1e-9, rotAngMom_N[:, 1] - rotAngMom_N[0, 1], rotAngMom_N[:, 0] * 1e-9, rotAngMom_N[:, 2] - rotAngMom_N[0, 2], rotAngMom_N[:, 0] * 1e-9, rotAngMom_N[:, 3] - rotAngMom_N[0, 3]) plt.title("Change in Rotational Angular Momentum") plt.figure(3) plt.plot(rotEnergy[:, 0] * 1e-9, rotEnergy[:, 1] - rotEnergy[0, 1]) plt.title("Change in Rotational Energy") plt.figure(4) plt.plot(thrLog.times() * 1e-9, thrust[:, 0], thrLog.times() * 1e-9, thrust[:, 1], thrLog.times() * 1e-9, thrust[:, 2]) plt.xlim([0, 20]) plt.ylim([0, 1]) plt.title("Thrust") plt.figure(5) plt.plot(thrLog.times() * 1e-9, thrustPercentage) plt.xlim([0, 20]) plt.ylim([0, 1.1]) plt.title("Thrust Percentage") plt.figure(6) plt.plot(fuelLog.times() * 1e-9, fuelMass) plt.xlim([0, 20]) plt.title("Fuel Mass") plt.figure(7) plt.plot(fuelLog.times() * 1e-9, fuelMassDot) plt.xlim([0, 20]) plt.title("Fuel Mass Dot") if show_plots: plt.show() plt.close('all') dataPos = posRef.getState() dataSigma = sigmaRef.getState() dataPos = [[dataPos[0][0], dataPos[1][0], dataPos[2][0]]] dataSigma = [[dataSigma[0][0], dataSigma[1][0], dataSigma[2][0]]] if thrusterType == "dynamicEffector": truePos = [[-6.7815933935338277e+06, 4.9468685979815889e+06, 5.4867416696776701e+06]] trueSigma = [[1.4401781243854264e-01, -6.4168702021364002e-02, 3.0166086824900967e-01]] elif thrusterType == "stateEffector": truePos = [[-6781593.400948599, 4946868.619447934, 5486741.690842073]] trueSigma = [[0.14367298348925786, -0.06487574480164254, 0.3032693696902734]] accuracy = 1e-6 for i in range(0, len(truePos)): # check a vector values if not unitTestSupport.isArrayEqualRelative(dataPos[i], truePos[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Thruster Integrated Test failed pos unit test") snippetName = thrusterType + 'PositionPassFail' passFail(testFailCount, snippetName) accuracy = 1e-4 for i in range(0, len(trueSigma)): # check a vector values if not unitTestSupport.isArrayEqualRelative(dataSigma[i], trueSigma[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Thruster Integrated Test failed attitude unit test") snippetName = thrusterType + 'AttitudePassFail' passFail(testFailCount, snippetName) if testFailCount == 0: print("PASSED: Thruster Integrated Sim Test") assert testFailCount < 1, testMessages # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)]
def axisChangeHelper(r_BcB_B): scObject = spacecraft.Spacecraft() scObject.ModelTag = "spacecraftBody" unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.1) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # add thruster devices thFactory = simIncludeThruster.thrusterFactory() thFactory.create( 'TEST_Thruster', [1, 0, 0] + [i[0] for i in r_BcB_B], # location in B-frame [0, 1, 0] # direction in B-frame ) # create thruster object container and tie to spacecraft object thrustersEffector = thrusterDynamicEffector.ThrusterDynamicEffector() thFactory.addToSpacecraft("Thrusters", thrustersEffector, scObject) # add tank unitTestSim.fuelTankStateEffector = fuelTank.FuelTank() unitTestSim.fuelTankStateEffector.setTankModel(fuelTank.TANK_MODEL_CONSTANT_VOLUME) tankModel = fuelTank.cvar.FuelTankModelConstantVolume tankModel.propMassInit = 40.0 tankModel.r_TcT_TInit = [[0.0], [0.0], [0.0]] unitTestSim.fuelTankStateEffector.r_TB_B = r_BcB_B tankModel.radiusTankInit = 46.0 / 2.0 / 3.2808399 / 12.0 # Add tank and thruster scObject.addStateEffector(unitTestSim.fuelTankStateEffector) # set thruster commands ThrustMessage = messaging.THRArrayOnTimeCmdMsgPayload() ThrustMessage.OnTimeRequest = [9.9] thrCmdMsg = messaging.THRArrayOnTimeCmdMsg().write(ThrustMessage) thrustersEffector.cmdsInMsg.subscribeTo(thrCmdMsg) # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, thrustersEffector) unitTestSim.AddModelToTask(unitTaskName, scObject) unitTestSim.earthGravBody = gravityEffector.GravBodyData() unitTestSim.earthGravBody.planetName = "earth_planet_data" unitTestSim.earthGravBody.mu = 0.3986004415E+15 # meters! unitTestSim.earthGravBody.isCentralBody = True scObject.gravField.gravBodies = spacecraft.GravBodyVector([unitTestSim.earthGravBody]) scObject.hub.mHub = 750.0 scObject.hub.r_BcB_B = r_BcB_B scObject.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]] scObject.hub.r_CN_NInit = [[-4020338.690396649 - r_BcB_B[0][0]], [7490566.741852513 - r_BcB_B[1][0]], [5248299.211589362 - r_BcB_B[2][0]]] scObject.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]] scObject.hub.sigma_BNInit = [[0.1], [0.2], [-0.3]] scObject.hub.omega_BN_BInit = [[0.001], [-0.01], [0.03]] scObjectLog = scObject.logger(["totOrbAngMomPntN_N", "totRotAngMomPntC_N", "totRotEnergy"]) unitTestSim.AddModelToTask(unitTaskName, scObjectLog) unitTestSim.InitializeSimulation() posRef = scObject.dynManager.getStateObject("hubPosition") sigmaRef = scObject.dynManager.getStateObject("hubSigma") stopTime = 60.0 * 10.0 unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime)) unitTestSim.ExecuteSimulation() orbAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbAngMomPntN_N) rotAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotAngMomPntC_N) rotEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotEnergy) dataPos = posRef.getState() dataSigma = sigmaRef.getState() dataPos = [[stopTime, dataPos[0][0], dataPos[1][0], dataPos[2][0]]] dataSigma = [[stopTime, dataSigma[0][0], dataSigma[1][0], dataSigma[2][0]]] return dataPos, dataSigma def test_axisChange(show_plots): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages dataPos1, dataSigma1 = axisChangeHelper([[0.0], [0.0], [0.0]]) dataPos2, dataSigma2 = axisChangeHelper([[0.5], [0.0], [0.0]]) def passFail(testFailCountInput, snippetName): if testFailCountInput < 1: textMsg = 'PASSED' textColor = 'ForestGreen' else: textMsg = 'FAILED' textColor = 'Red' texSnippet = r'\textcolor{' + textColor + '}{' + textMsg + '}' unitTestSupport.writeTeXSnippet(snippetName, texSnippet, path) if __name__ == "__main__": test_massDepletionTest( True, # show_plots "stateEffector" # thrusterType )