Source code for test_linearSpringMassDamper


# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.


import inspect
import os

import matplotlib.pyplot as plt
import numpy as np
import pytest

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))

from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions
from Basilisk.simulation import spacecraft
from Basilisk.simulation import linearSpringMassDamper
from Basilisk.simulation import gravityEffector
from Basilisk.utilities import macros
from Basilisk.utilities import pythonVariableLogger
from Basilisk.simulation import fuelTank
from Basilisk.simulation import thrusterDynamicEffector
from Basilisk.utilities import simIncludeThruster
from Basilisk.architecture import messaging

[docs]@pytest.mark.parametrize("useFlag, testCase", [ (False,'NoGravity'), (False,'Gravity'), (False,'Damping'), (False,'MassDepletion') ]) # uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed # @pytest.mark.skipif(conditionstring) # uncomment this line if this test has an expected failure, adjust message as needed # @pytest.mark.xfail() # need to update how the RW states are defined # provide a unique test method name, starting with test_ def test_fuelSloshAllTest(show_plots,useFlag,testCase): """Module Unit Test""" [testResults, testMessage] = fuelSloshTest(show_plots,useFlag,testCase) assert testResults < 1, testMessage
def fuelSloshTest(show_plots,useFlag,testCase): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages scObject = spacecraft.Spacecraft() scObject.ModelTag = "spacecraftBody" unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.001) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) unitTestSim.particle1 = linearSpringMassDamper.LinearSpringMassDamper() unitTestSim.particle2 = linearSpringMassDamper.LinearSpringMassDamper() unitTestSim.particle3 = linearSpringMassDamper.LinearSpringMassDamper() # Define Variables for particle 1 unitTestSim.particle1.k = 100.0 unitTestSim.particle1.c = 0.0 unitTestSim.particle1.r_PB_B = [[0.1], [0], [-0.1]] unitTestSim.particle1.pHat_B = [[np.sqrt(3)/3], [np.sqrt(3)/3], [np.sqrt(3)/3]] unitTestSim.particle1.rhoInit = 0.05 unitTestSim.particle1.rhoDotInit = 0.0 unitTestSim.particle1.massInit = 10.0 # Define Variables for particle 2 unitTestSim.particle2.k = 100.0 unitTestSim.particle2.c = 0.0 unitTestSim.particle2.r_PB_B = [[0], [0], [0.1]] unitTestSim.particle2.pHat_B = [[np.sqrt(3)/3], [-np.sqrt(3)/3], [-np.sqrt(3)/3]] unitTestSim.particle2.rhoInit = -0.025 unitTestSim.particle2.rhoDotInit = 0.0 unitTestSim.particle2.massInit = 20.0 # Define Variables for particle 3 unitTestSim.particle3.k = 100.0 unitTestSim.particle3.c = 0.0 unitTestSim.particle3.r_PB_B = [[-0.1], [0], [0.1]] unitTestSim.particle3.pHat_B = [[-np.sqrt(3)/3], [-np.sqrt(3)/3], [np.sqrt(3)/3]] unitTestSim.particle3.rhoInit = -0.015 unitTestSim.particle3.rhoDotInit = 0.0 unitTestSim.particle3.massInit = 15.0 if testCase == 'MassDepletion': thrusterCommandName = "acs_thruster_cmds" # add thruster devices thFactory = simIncludeThruster.thrusterFactory() thFactory.create('MOOG_Monarc_445', [1,0,0], # location in S frame [0,1,0] # direction in S frame ) # create thruster object container and tie to spacecraft object thrustersDynamicEffector = thrusterDynamicEffector.ThrusterDynamicEffector() thFactory.addToSpacecraft("Thrusters", thrustersDynamicEffector, scObject) unitTestSim.fuelTankStateEffector = fuelTank.FuelTank() unitTestSim.fuelTankStateEffector.setTankModel(fuelTank.TANK_MODEL_CONSTANT_VOLUME) tankModel = fuelTank.cvar.FuelTankModelConstantVolume tankModel.propMassInit = 40.0 tankModel.r_TcT_TInit = [[0.0],[0.0],[0.0]] unitTestSim.fuelTankStateEffector.r_TB_B = [[0.0],[0.0],[0.0]] tankModel.radiusTankInit = 46.0 / 2.0 / 3.2808399 / 12.0 # Add tank and thruster scObject.addStateEffector(unitTestSim.fuelTankStateEffector) unitTestSim.fuelTankStateEffector.addThrusterSet(thrustersDynamicEffector) # set thruster commands ThrustMessage = messaging.THRArrayOnTimeCmdMsgPayload() ThrustMessage.OnTimeRequest = [5.0] thrInMsg = messaging.THRArrayOnTimeCmdMsg().write(ThrustMessage) thrustersDynamicEffector.cmdsInMsg.subscribeTo(thrInMsg) # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, unitTestSim.fuelTankStateEffector) unitTestSim.AddModelToTask(unitTaskName, thrustersDynamicEffector) dataTank = unitTestSim.fuelTankStateEffector.fuelTankOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataTank) # Add particles to tank to activate mass depletion unitTestSim.fuelTankStateEffector.pushFuelSloshParticle(unitTestSim.particle1) unitTestSim.fuelTankStateEffector.pushFuelSloshParticle(unitTestSim.particle2) unitTestSim.fuelTankStateEffector.pushFuelSloshParticle(unitTestSim.particle3) # Add particles to spacecraft scObject.addStateEffector(unitTestSim.particle1) scObject.addStateEffector(unitTestSim.particle2) scObject.addStateEffector(unitTestSim.particle3) if testCase == 'Damping': unitTestSim.particle1.c = 15.0 unitTestSim.particle2.c = 17.0 unitTestSim.particle3.c = 11.0 # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, scObject) scObject.hub.mHub = 750 scObject.hub.r_BcB_B = [[0.0], [0.0], [0.0]] scObject.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]] scObject.hub.r_CN_NInit = [[0.5], [0.4], [-0.7]] scObject.hub.v_CN_NInit = [[0.1], [0.-5], [0.3]] scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]] scObject.hub.omega_BN_BInit = [[0.1], [-0.1], [0.1]] if testCase == 'Gravity': unitTestSim.earthGravBody = gravityEffector.GravBodyData() unitTestSim.earthGravBody.planetName = "earth_planet_data" unitTestSim.earthGravBody.mu = 0.3986004415E+15 # meters! unitTestSim.earthGravBody.isCentralBody = True scObject.gravField.gravBodies = spacecraft.GravBodyVector([unitTestSim.earthGravBody]) scObject.hub.r_CN_NInit = [[-4020338.690396649], [7490566.741852513], [5248299.211589362]] scObject.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]] dataLog = scObject.scStateOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) scObjectLog = scObject.logger(["totOrbEnergy", "totOrbAngMomPntN_N", "totRotAngMomPntC_N", "totRotEnergy"]) unitTestSim.AddModelToTask(unitTaskName, scObjectLog) if testCase == 'MassDepletion': stateLog = pythonVariableLogger.PythonVariableLogger({ "mass1": lambda _: scObject.dynManager.getStateObject('linearSpringMassDamperMass1').getState(), "mass2": lambda _: scObject.dynManager.getStateObject('linearSpringMassDamperMass2').getState(), "mass3": lambda _: scObject.dynManager.getStateObject('linearSpringMassDamperMass3').getState(), }) unitTestSim.AddModelToTask(unitTaskName, stateLog) unitTestSim.InitializeSimulation() posRef = scObject.dynManager.getStateObject("hubPosition") sigmaRef = scObject.dynManager.getStateObject("hubSigma") stopTime = 2.5 if testCase == 'MassDepletion': stopTime = 10.0 unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime)) unitTestSim.ExecuteSimulation() if testCase == 'MassDepletion': fuelMass = dataTank.fuelMass fuelMassDot = dataTank.fuelMassDot mass1Out = unitTestSupport.addTimeColumn(stateLog.times(), stateLog.mass1) mass2Out = unitTestSupport.addTimeColumn(stateLog.times(), stateLog.mass2) mass3Out = unitTestSupport.addTimeColumn(stateLog.times(), stateLog.mass3) orbEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbEnergy) orbAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbAngMomPntN_N) rotAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotAngMomPntC_N) rotEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotEnergy) initialOrbAngMom_N = [ [orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]] ] finalOrbAngMom = [ [orbAngMom_N[-1,1], orbAngMom_N[-1,2], orbAngMom_N[-1,3]] ] initialRotAngMom_N = [ [rotAngMom_N[0,1], rotAngMom_N[0,2], rotAngMom_N[0,3]] ] finalRotAngMom = [ [rotAngMom_N[-1,1], rotAngMom_N[-1,2], rotAngMom_N[-1,3]] ] initialOrbEnergy = [ [orbEnergy[0,1]] ] finalOrbEnergy = [ [orbEnergy[-1,1]] ] initialRotEnergy = [ [rotEnergy[0,1]] ] finalRotEnergy = [ [rotEnergy[-1,1]] ] plt.close('all') if testCase != 'MassDepletion': plt.figure() plt.clf() plt.plot(orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,1] - orbAngMom_N[0,1])/orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,2] - orbAngMom_N[0,2])/orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,3] - orbAngMom_N[0,3])/orbAngMom_N[0,3]) plt.xlabel("Time (s)") plt.ylabel("Relative Difference") unitTestSupport.writeFigureLaTeX("ChangeInOrbitalAngularMomentum" + testCase, "Change in Orbital Angular Momentum " + testCase, plt, r"width=0.8\textwidth", path) plt.figure() plt.clf() plt.plot(orbEnergy[:,0]*1e-9, (orbEnergy[:,1] - orbEnergy[0,1])/orbEnergy[0,1]) plt.xlabel("Time (s)") plt.ylabel("Relative Difference") unitTestSupport.writeFigureLaTeX("ChangeInOrbitalEnergy" + testCase, "Change in Orbital Energy " + testCase, plt, r"width=0.8\textwidth", path) plt.figure() plt.clf() plt.plot(rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,1] - rotAngMom_N[0,1])/rotAngMom_N[0,1], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,2] - rotAngMom_N[0,2])/rotAngMom_N[0,2], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,3] - rotAngMom_N[0,3])/rotAngMom_N[0,3]) plt.xlabel("Time (s)") plt.ylabel("Relative Difference") unitTestSupport.writeFigureLaTeX("ChangeInRotationalAngularMomentum" + testCase, "Change in Rotational Angular Momentum " + testCase, plt, r"width=0.8\textwidth", path) if testCase == 'Gravity' or testCase == 'NoGravity': plt.figure() plt.clf() plt.plot(rotEnergy[:,0]*1e-9, (rotEnergy[:,1] - rotEnergy[0,1])/rotEnergy[0,1]) plt.xlabel("Time (s)") plt.ylabel("Relative Difference") unitTestSupport.writeFigureLaTeX("ChangeInRotationalEnergy" + testCase, "Change in Rotational Energy " + testCase, plt, r"width=0.8\textwidth", path) if testCase == 'MassDepletion': plt.figure() plt.plot(dataTank.times()*1e-9, fuelMass) plt.title("Tank Fuel Mass") plt.figure() plt.plot(dataTank.times()*1e-9, fuelMassDot) plt.title("Tank Fuel Mass Dot") plt.figure() plt.plot(mass1Out[:,0]*1e-9, mass1Out[:,1]) plt.title("Fuel Particle 1 Mass") plt.figure() plt.plot(mass2Out[:,0]*1e-9, mass2Out[:,1]) plt.title("Fuel Particle 2 Mass") plt.figure() plt.plot(mass3Out[:,0]*1e-9, mass3Out[:,1]) plt.title("Fuel Particle 3 Mass") mDotFuel = -0.19392039093 mDotParicle1True = mDotFuel*(10./85.) mDotParicle2True = mDotFuel*(20./85.) mDotParicle3True = mDotFuel*(15./85.) mDotParicle1Data = (mass1Out[2,1] - mass1Out[1,1])/((mass1Out[2,0] - mass1Out[1,0])*1e-9) mDotParicle2Data = (mass2Out[2,1] - mass2Out[1,1])/((mass2Out[2,0] - mass2Out[1,0])*1e-9) mDotParicle3Data = (mass3Out[2,1] - mass3Out[1,1])/((mass3Out[2,0] - mass3Out[1,0])*1e-9) if show_plots: plt.show() plt.close('all') if testCase != 'MassDepletion': accuracy = 1e-10 for i in range(0,len(initialOrbAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Linear Spring Mass Damper unit test failed orbital angular momentum unit test") for i in range(0,len(initialRotAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Linear Spring Mass Damper unit test failed rotational angular momentum unit test") if testCase == 'Gravity' or testCase == 'NoGravity': for i in range(0,len(initialRotEnergy)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i],initialRotEnergy[i],1,accuracy): testFailCount += 1 testMessages.append("FAILED: Linear Spring Mass Damper unit test failed rotational energy unit test") for i in range(0,len(initialOrbEnergy)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i],initialOrbEnergy[i],1,accuracy): testFailCount += 1 testMessages.append("FAILED: Linear Spring Mass Damper unit test failed orbital energy unit test") if testCase == 'MassDepletion': accuracy = 1e-4 if not unitTestSupport.isDoubleEqual(mDotParicle1Data,mDotParicle1True,accuracy): testFailCount += 1 testMessages.append("FAILED: Linear Spring Mass Damper unit test failed mass 1 dot test") if not unitTestSupport.isDoubleEqual(mDotParicle2Data,mDotParicle2True,accuracy): testFailCount += 1 testMessages.append("FAILED: Linear Spring Mass Damper unit test failed mass 2 dot test") if not unitTestSupport.isDoubleEqual(mDotParicle3Data,mDotParicle3True,accuracy): testFailCount += 1 testMessages.append("FAILED: Linear Spring Mass Damper unit test failed mass 3 dot test") if testFailCount == 0: print("PASSED: " + " Linear Spring Mass Damper Test") assert testFailCount < 1, testMessages # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] if __name__ == "__main__": fuelSloshTest(True,False,'Gravity')