Source code for test_horizonOpNav

#
#   Unit Test Script
#   Module Name:        pixelLineConverter.py
#   Creation Date:      May 16, 2019
#   Author:             Thibaud Teil
#

import inspect
import os

import numpy as np
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import horizonOpNav
from Basilisk.utilities import RigidBodyKinematics as rbk
from Basilisk.utilities import SimulationBaseClass, unitTestSupport, macros

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))

def back_substitution(A, b):
    n = b.size
    x = np.zeros_like(b)

    if A[-1, -1] == 0:
        raise ValueError

    x[-1] = b[-1]/ A[-1, -1]
    for i in range(n-2, -1, -1):
        sum=0
        for j in range(i, n):
            sum += A[i, j]*x[j]
        x[i] = (b[i] - sum)/A[i,i]
    return x


[docs]def test_horizonOpNav(): """ Unit test for Horizon Navigation. The unit test specifically covers: 1. Individual methods: This module contains a back substitution method as well as a QR decomposition. This test ensures that they are working properly with a direct test of the method input/outputs with expected results 2. State and Covariances: This unit test also computes the state estimate and covariance in python. This is compared directly to the output from the module for exact matching. The Horizon Nav module gives the spacecraft position given a limb input. This test ensures that the results are as expected both for the state estimate and the covariance associated with the measurement. """ [testResults, testMessage] = horizonOpNav_methods() assert testResults < 1, testMessage [testResults, testMessage] = horizonOpNav_update() assert testResults < 1, testMessage
def horizonOpNav_methods(): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages ################################################################################### ## Testing QR decomp ################################################################################### Hinput = np.array([[1,2,3],[1,20,3],[3,0,1],[2,1,0],[20,-1, -5],[0,10,-5]]) numStates = np.shape(Hinput)[0] # Fill in the variables for the test Qin = horizonOpNav.new_doubleArray(3 * numStates) Rin = horizonOpNav.new_doubleArray(3 * 3) Hin = horizonOpNav.new_doubleArray(numStates * 3) for j in range(numStates*3): horizonOpNav.doubleArray_setitem(Qin, j, 0) for j in range(3 * 3): horizonOpNav.doubleArray_setitem(Rin, j, 0) for j in range(numStates * 3): horizonOpNav.doubleArray_setitem(Hin, j, Hinput.flatten().tolist()[j]) horizonOpNav.QRDecomp(Hin, numStates, Qin, Rin) Qout = [] for j in range(3 * numStates): Qout.append(horizonOpNav.doubleArray_getitem(Qin, j)) Rout = [] for j in range(3 * 3): Rout.append(horizonOpNav.doubleArray_getitem(Rin, j)) q,r = np.linalg.qr(Hinput) Rpy = np.zeros([3,3]) Qpy = np.zeros([numStates, 3]) for i in range(0,3): Qpy[:,i] = Hinput[:,i] for j in range(i): Rpy[j,i] = np.dot(Qpy[:,j], Hinput[:,i]) Qpy[:,i]= Qpy[:,i] - Rpy[j,i]*Qpy[:,j] Rpy[i,i] = np.linalg.norm(Qpy[:,i]) Qpy[:,i] = 1 / Rpy[i,i] * Qpy[:,i] Qtest = np.array(Qout).reshape([numStates,3]) Rtest = np.array(Rout).reshape(3, 3) errorNorm1 = np.linalg.norm(Qpy - Qtest) errorNorm2 = np.linalg.norm(Rpy - Rtest) if (errorNorm1 > 1.0E-10): print(errorNorm1, "QR decomp") testFailCount += 1 testMessages.append("QR decomp Failure in Q" + "\n") if (errorNorm2 > 1.0E-10): print(errorNorm2, "QR decomp") testFailCount += 1 testMessages.append("QR decomp Failure in R" + "\n") errorNorm1 = np.linalg.norm(q + Qtest) errorNorm2 = np.linalg.norm(r[:3,:3] + Rtest) if (errorNorm1 > 1.0E-10): print(errorNorm1, "QR decomp") testFailCount += 1 testMessages.append("QR decomp Failure in Q" + "\n") if (errorNorm2 > 1.0E-10): print(errorNorm2, "QR decomp") testFailCount += 1 testMessages.append("QR decomp Failure in R" + "\n") ################################################################################### ## Testing Back Sub ################################################################################### V = np.ones(3) nIn = horizonOpNav.new_doubleArray(3) VIn = horizonOpNav.new_doubleArray(3) RIn = horizonOpNav.new_doubleArray(numStates*3) for i in range(3): horizonOpNav.doubleArray_setitem(nIn, i, 0.0) for i in range(3*3): horizonOpNav.doubleArray_setitem(RIn, i, r.flatten().tolist()[i]) for i in range(3): horizonOpNav.doubleArray_setitem(VIn, i, V.flatten().tolist()[i]) horizonOpNav.BackSub(RIn, VIn, 3, nIn) BackSubOut = [] for i in range(3): BackSubOut.append(horizonOpNav.doubleArray_getitem(nIn, i)) exp = back_substitution(r[:3,:3], V) BackSubOut = np.array(BackSubOut) errorNorm = np.linalg.norm(exp - BackSubOut) if(errorNorm > 1.0E-10): print(errorNorm, "BackSub") testFailCount += 1 testMessages.append("BackSub Failure " + "\n") return [testFailCount, ''.join(testMessages)] ################################################################################### ## Testing dynamics matrix computation ################################################################################### def horizonOpNav_update(): # Create a sim module as an empty container testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Add a new task to the process # Construct the ephemNavConverter module # Set the names for the input messages opNav = horizonOpNav.horizonOpNav() opNav.noiseSF = 2 # ephemNavConfig.outputState = simFswInterfaceMessages.NavTransIntMsg() # This calls the algContain to setup the selfInit, update, and reset opNav.ModelTag = "limbNav" # Add the module to the task unitTestSim.AddModelToTask(unitTaskName, opNav) # These are example points for fitting used from an image processing algorithm inputPoints = [226., 113., 227., 113., 223., 114., 224., 114., 225., 114., 219., 115., 220., 115., 221., 115., 222., 115., 215., 116., 216., 116., 217., 116., 218., 116., 212., 117., 213., 117., 214., 117., 209., 118., 210., 118., 211., 118., 205., 119., 206., 119., 207., 119., 208., 119., 204., 120., 205., 120., 201., 121., 202., 121., 203., 121., 199., 122., 200., 122., 197., 123., 198., 123., 195., 124., 196., 124., 193., 125., 194., 125., 191., 126., 192., 126., 189., 127., 190., 127., 187., 128., 188., 128., 185., 129., 186., 129., 183., 130., 184., 130., 181., 131., 182., 131., 180., 132., 181., 132., 178., 133., 179., 133., 177., 134., 178., 134., 175., 135., 176., 135., 174., 136., 175., 136., 172., 137., 173., 137., 171., 138., 172., 138., 170., 139., 171., 139., 168., 140., 169., 140., 167., 141., 168., 141., 166., 142., 167., 142., 164., 143., 165., 143., 163., 144., 164., 144., 162., 145., 163., 145., 161., 146., 162., 146., 160., 147., 161., 147., 159., 148., 160., 148., 158., 149., 159., 149., 156., 150., 157., 150., 155., 151., 156., 151., 154., 152., 155., 152., 153., 153., 154., 153., 153., 154., 152., 155., 151., 156., 152., 156., 150., 157., 151., 157., 149., 158., 150., 158., 148., 159., 149., 159., 147., 160., 148., 160., 146., 161., 147., 161., 145., 162., 146., 162., 145., 163., 144., 164., 143., 165., 144., 165., 142., 166., 143., 166., 142., 167., 141., 168., 140., 169., 141., 169., 139., 170., 140., 170., 139., 171., 138., 172., 137., 173., 138., 173., 137., 174., 136., 175., 135., 176., 136., 176., 135., 177., 134., 178., 133., 179., 134., 179., 133., 180., 132., 181., 132., 182., 131., 183., 131., 184., 130., 185., 129., 186., 130., 186., 129., 187., 128., 188., 128., 189., 127., 190., 127., 191., 126., 192., 126., 193., 125., 194., 125., 195., 125., 196., 124., 197., 124., 198., 123., 199., 123., 200., 122., 201., 122., 202., 122., 203., 121., 204., 120., 205., 121., 205., 120., 206., 120., 207., 120., 208., 119., 209., 119., 210., 119., 211., 118., 212., 118., 213., 118., 214., 117., 215., 117., 216., 117., 217., 117., 218., 116., 219., 116., 220., 116., 221., 116., 222., 115., 223., 115., 224., 115., 225., 115., 226., 114., 227., 114., 228., 114., 229., 114., 230., 114., 231., 114., 232., 113., 233., 113., 234., 113., 235., 113., 236., 113., 237., 113., 238., 113., 239., 112., 240., 112., 241., 112., 242., 112., 243., 112., 244., 112., 245., 112., 246., 112., 247., 112., 248., 112., 249., 112., 250., 112., 251., 112., 252., 112., 253., 112., 254., 111., 255., 111., 256., 112., 257., 112., 258., 112., 259., 112., 260., 112., 261., 112., 262., 112., 263., 112., 264., 112., 265., 112., 266., 112., 267., 112., 268., 112., 269., 112., 270., 112., 271., 113., 272., 113., 273., 113., 274., 113., 275., 113., 276., 113., 277., 113., 278., 114., 279., 114., 280., 114., 281., 114., 282., 114., 283., 114., 284., 115., 285., 115., 286., 115., 287., 115., 288., 116., 289., 116., 290., 116., 291., 116., 292., 117., 293., 117., 294., 117., 295., 117., 296., 118., 297., 118., 298., 118., 299., 119., 300., 119., 301., 119., 302., 120., 303., 120., 304., 120., 305., 121., 306., 121., 307., 122., 308., 122., 309., 122., 310., 123., 311., 123., 312., 124., 313., 124., 314., 125., 315., 125., 316., 125., 317., 126., 318., 126., 319., 127., 320., 127., 321., 128., 322., 128., 323., 129., 324., 129., 325., 130., 325., 130., 326., 131., 327., 131., 328., 132., 329., 132., 330., 133., 331., 133., 332., 134., 332., 134., 333., 135., 334., 135., 335., 136., 335., 136., 336., 137., 337., 137., 338., 138., 338., 138., 339., 139., 340., 139., 341., 140., 341., 140., 342., 141., 342., 141., 343., 142., 344., 142., 345., 143., 345., 143., 346., 144., 346., 144., 347., 145., 348., 145., 349., 146., 349., 146., 350., 147., 350., 147., 351., 148., 351., 148., 352., 149., 352., 149., 353., 150., 353., 150., 354., 151., 354., 151., 355., 152., 356., 152., 357., 153., 357., 153., 358., 154., 358., 154., 359., 155., 359., 155., 360., 156., 360., 156., 361., 157., 361., 158., 362., 159., 362., 159., 363., 160., 363., 160., 364., 161., 364., 161., 365., 162., 365., 162., 366., 163., 366., 163., 367., 164., 367., 164., 368., 165., 368., 166., 369., 167., 369., 167., 370., 168., 370., 168., 371., 169., 371., 169., 372., 170., 372., 171., 373., 172., 373., 172., 374., 173., 374., 174., 375., 175., 375., 175., 376., 176., 376., 177., 377., 178., 377., 178., 378., 179., 378., 180., 379., 181., 379., 181., 380., 182., 380., 183., 381., 184., 381., 185., 382., 186., 382., 187., 383., 188., 383., 188., 384., 189., 384., 190., 385., 191., 385., 192., 386.] # Create the input messages. inputCamera = messaging.CameraConfigMsgPayload() inputLimbMsg = messaging.OpNavLimbMsgPayload() inputAtt = messaging.NavAttMsgPayload() # Set camera inputCamera.fieldOfView = 2.0 * np.arctan(10*1e-3 / 2.0 / 1. ) # 2*arctan(s/2 / f) inputCamera.resolution = [512, 512] inputCamera.sigma_CB = [1.,0.2,0.3] camInMsg = messaging.CameraConfigMsg().write(inputCamera) opNav.cameraConfigInMsg.subscribeTo(camInMsg) # Set circles inputLimbMsg.valid = 1 inputLimbMsg.limbPoints = inputPoints inputLimbMsg.numLimbPoints = int(len(inputPoints)/2) inputLimbMsg.timeTag = 12345 limbInMsg = messaging.OpNavLimbMsg().write(inputLimbMsg) opNav.limbInMsg.subscribeTo(limbInMsg) # Set attitude inputAtt.sigma_BN = [0.6, 1., 0.1] attInMsg = messaging.NavAttMsg().write(inputAtt) opNav.attInMsg.subscribeTo(attInMsg) # Set module for Mars opNav.planetTarget = 2 dataLog = opNav.opNavOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # Initialize the simulation unitTestSim.InitializeSimulation() # The result isn't going to change with more time. The module will continue to produce the same result unitTestSim.ConfigureStopTime(testProcessRate) # seconds to stop simulation unitTestSim.ExecuteSimulation() # Truth Vlaues ############################ Q = np.eye(3) B = np.zeros([3,3]) Q *= 1/(3396.19*1E3) # km # Q[2,2] = 1/(3376.2*1E3) numPoints = int(len(inputPoints)/2) CB = rbk.MRP2C(inputCamera.sigma_CB) BN = rbk.MRP2C(inputAtt.sigma_BN) CN = np.dot(CB,BN) B = np.dot(Q, CN.T) # Transf camera to meters alpha =0 up = inputCamera.resolution[0] / 2 vp = inputCamera.resolution[1] / 2 pX = 2. * np.tan(inputCamera.fieldOfView * inputCamera.resolution[0] / inputCamera.resolution[1] / 2.0) pY = 2. * np.tan(inputCamera.fieldOfView / 2.0) d_x = inputCamera.resolution[0] / pX d_y = inputCamera.resolution[1] / pY transf = np.zeros([3,3]) transf[0, 0] = 1 / d_x transf[1, 1] = 1 / d_y transf[2, 2] = 1 transf[0, 1] = -alpha/(d_x*d_y) transf[0, 2] = (alpha*vp - d_y*up)/ (d_x * d_y) transf[1, 2] = -vp / (d_y) s = np.zeros([numPoints,3]) sBar = np.zeros([numPoints,3]) sBarPrime = np.zeros([numPoints,3]) H = np.zeros([numPoints,3]) for i in range(numPoints): s[i,:] = np.dot(transf, np.array([inputPoints[2*i], inputPoints[2*i+1], 1])) sBar[i,:] = np.dot(B, s[i,:]) sBarPrime[i,:] = sBar[i,:]/np.linalg.norm(sBar[i,:]) H[i,:] = sBarPrime[i,:] # QR H Rpy = np.zeros([3,3]) Qpy = np.zeros([numPoints, 3]) for i in range(0,3): Qpy[:,i] = H[:,i] for j in range(i): Rpy[j,i] = np.dot(Qpy[:,j], H[:,i]) Qpy[:,i]= Qpy[:,i] - Rpy[j,i]*Qpy[:,j] Rpy[i,i] = np.linalg.norm(Qpy[:,i]) Qpy[:,i] = 1 / Rpy[i,i] * Qpy[:,i] errorNorm1 = np.linalg.norm(np.dot(Qpy, Rpy) - H) if (errorNorm1 > 1.0E-8): print(errorNorm1, "QR decomp") testFailCount += 1 testMessages.append("QR decomp Failure in update test " + "\n") # Back Sub RHS = np.dot(Qpy.T, np.ones(numPoints)) n = back_substitution(Rpy, RHS) n_test = np.dot(np.linalg.inv(Rpy), RHS) R_s = (opNav.noiseSF*inputCamera.resolution[0]/(numPoints))**2/d_x**2*np.array([[1,0,0],[0,1,0],[0,0,0]]) R_s = np.dot(np.dot(B, R_s), B.T) R_yInv = np.zeros([numPoints, numPoints]) for i in range(numPoints): J = 1./np.linalg.norm(sBar[i,:])*np.dot(n, np.eye(3) - np.outer(sBarPrime[i,:], sBarPrime[i,:])) temp = np.dot(R_s, J) R_yInv[i,i] = 1./np.dot(temp, J) Pn = np.linalg.inv(np.dot(np.dot(H.T, R_yInv),H)) F = -(np.dot(n,n) - 1)**(-0.5)*np.dot(np.linalg.inv(B), np.eye(3) - np.outer(n,n)/(np.dot(n,n)-1)) Covar_C_test = np.dot(np.dot(F, Pn), F.T) errorNorm1 = np.linalg.norm(n_test - n) if (errorNorm1 > 1.0E-8): print(errorNorm1, "Back Sub") testFailCount += 1 testMessages.append("Back Sub Failure in update test " + "\n") r_BN_C = - (np.dot(n,n) - 1.)**(-0.5)*np.dot(np.linalg.inv(B), n) posErr = 1e-3 #(m) covarErr = 1e-5 unitTestSupport.writeTeXSnippet("toleranceValuePos", str(posErr), path) unitTestSupport.writeTeXSnippet("toleranceValueVel", str(covarErr), path) outputR = dataLog.r_BN_C outputCovar = dataLog.covar_C outputTime = dataLog.timeTag for i in range(len(outputR[-1, 1:])): if np.abs((r_BN_C[i] - outputR[0, i])/r_BN_C[i]) > posErr or np.isnan(outputR.any()): testFailCount += 1 testMessages.append("FAILED: Position Check in Horizon Nav for index "+ str(i) + " with error " + str(np.abs((r_BN_C[i] - outputR[-1, i+1])/r_BN_C[i]))) for i in range(len(outputCovar[-1, 1:])): if np.abs((Covar_C_test.flatten()[i] - outputCovar[0, i])/Covar_C_test.flatten()[i]) > covarErr or np.isnan(outputTime.any()): testFailCount += 1 testMessages.append("FAILED: Covar Check in Horizon Nav for index "+ str(i) + " with error " + str(np.abs((Covar_C_test.flatten()[i] - outputCovar[-1, i+1])))) snippentName = "passFail" if testFailCount == 0: colorText = 'ForestGreen' print("PASSED: " + opNav.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}' else: colorText = 'Red' print("Failed: " + opNav.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}' print(testMessages) unitTestSupport.writeTeXSnippet(snippentName, passedText, path) return [testFailCount, ''.join(testMessages)] if __name__ == '__main__': # horizonOpNav_methods() horizonOpNav_update()