Source code for test_dualhingedRigidBodyStateEffector


# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.


import inspect
import os

import matplotlib.pyplot as plt
import numpy
import pytest

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
splitPath = path.split('simulation')

from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport
from Basilisk.simulation import spacecraft
from Basilisk.simulation import dualHingedRigidBodyStateEffector
from Basilisk.simulation import gravityEffector
from Basilisk.utilities import macros
from Basilisk.utilities import pythonVariableLogger
from Basilisk.simulation import spacecraftSystem
from Basilisk.architecture import messaging

[docs]@pytest.mark.parametrize("useFlag, testCase", [ (False, 'NoGravity'), (False, 'Gravity') ]) # uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed # @pytest.mark.skipif(conditionstring) # uncomment this line if this test has an expected failure, adjust message as needed # @pytest.mark.xfail() # need to update how the RW states are defined # provide a unique test method name, starting with test_ def test_dualHingedRigidBody(show_plots, useFlag, testCase): """Module Unit Test""" [testResults, testMessage] = dualHingedRigidBodyTest(show_plots, useFlag, testCase) assert testResults < 1, testMessage
def dualHingedRigidBodyTest(show_plots, useFlag, testCase): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages scObject = spacecraft.Spacecraft() scObject.ModelTag = "spacecraftBody" unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.0001) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) unitTestSim.panel1 = dualHingedRigidBodyStateEffector.DualHingedRigidBodyStateEffector() unitTestSim.panel2 = dualHingedRigidBodyStateEffector.DualHingedRigidBodyStateEffector() # Define Variable for panel 1 unitTestSim.panel1.ModelTag = "panel1" unitTestSim.panel1.mass1 = 50.0 unitTestSim.panel1.IPntS1_S1 = [[50.0, 0.0, 0.0], [0.0, 25.0, 0.0], [0.0, 0.0, 25.0]] unitTestSim.panel1.d1 = 0.75 unitTestSim.panel1.l1 = 1.5 unitTestSim.panel1.k1 = 100.0 unitTestSim.panel1.c1 = 0.0 unitTestSim.panel1.r_H1B_B = [[0.5], [0.0], [1.0]] unitTestSim.panel1.dcm_H1B = [[-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0]] unitTestSim.panel1.mass2 = 50.0 unitTestSim.panel1.IPntS2_S2 = [[50.0, 0.0, 0.0], [0.0, 25.0, 0.0], [0.0, 0.0, 25.0]] unitTestSim.panel1.d2 = 0.75 unitTestSim.panel1.k2 = 100.0 unitTestSim.panel1.c2 = 0.0 unitTestSim.panel1.theta1Init = 5*numpy.pi/180.0 unitTestSim.panel1.theta1DotInit = 0.0 unitTestSim.panel1.theta2Init = 0.0 unitTestSim.panel1.theta2DotInit = 0.0 # Define Variables for panel 2 unitTestSim.panel2.ModelTag = "panel2" unitTestSim.panel2.mass1 = 50.0 unitTestSim.panel2.IPntS1_S1 = [[50.0, 0.0, 0.0], [0.0, 25.0, 0.0], [0.0, 0.0, 25.0]] unitTestSim.panel2.d1 = 0.75 unitTestSim.panel2.l1 = 1.5 unitTestSim.panel2.k1 = 100.0 unitTestSim.panel2.c1 = 0.0 unitTestSim.panel2.r_H1B_B = [[-0.5], [0.0], [1.0]] unitTestSim.panel2.dcm_H1B = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] unitTestSim.panel2.mass2 = 50.0 unitTestSim.panel2.IPntS2_S2 = [[50.0, 0.0, 0.0], [0.0, 25.0, 0.0], [0.0, 0.0, 25.0]] unitTestSim.panel2.d2 = 0.75 unitTestSim.panel2.k2 = 100.0 unitTestSim.panel2.c2 = 0.0 unitTestSim.panel2.theta1Init = 5*numpy.pi/180.0 unitTestSim.panel2.theta1DotInit = 0.0 unitTestSim.panel2.theta2Init = 0.0 unitTestSim.panel2.theta2DotInit = 0.0 # Add panels to spaceCraft # this next line is not working scObject.addStateEffector(unitTestSim.panel1) scObject.addStateEffector(unitTestSim.panel2) scObject.hub.mHub = 750.0 scObject.hub.r_BcB_B = [[0.0], [0.0], [0.0]] scObject.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]] # Set the initial values for the states scObject.hub.r_CN_NInit = [[0.1], [-0.4], [0.3]] scObject.hub.v_CN_NInit = [[-0.2], [0.5], [0.1]] scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]] scObject.hub.omega_BN_BInit = [[0.1], [-0.1], [0.1]] # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, scObject) if testCase == 'Gravity': unitTestSim.earthGravBody = gravityEffector.GravBodyData() unitTestSim.earthGravBody.planetName = "earth_planet_data" unitTestSim.earthGravBody.mu = 0.3986004415E+15 # meters! unitTestSim.earthGravBody.isCentralBody = True scObject.gravField.gravBodies = spacecraft.GravBodyVector([unitTestSim.earthGravBody]) scObject.hub.r_CN_NInit = [[-4020338.690396649], [7490566.741852513], [5248299.211589362]] scObject.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]] dataLog = scObject.scStateOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # Add energy and momentum s to log scObjectLog = scObject.logger(["totOrbEnergy", "totOrbAngMomPntN_N", "totRotAngMomPntC_N", "totRotEnergy"]) unitTestSim.AddModelToTask(unitTaskName, scObjectLog) unitTestSim.InitializeSimulation() stopTime = 1.0 unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime)) unitTestSim.ExecuteSimulation() orbEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbEnergy) orbAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbAngMomPntN_N) rotAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotAngMomPntC_N) rotEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotEnergy) initialOrbAngMom_N = [ [orbAngMom_N[0, 1], orbAngMom_N[0, 2], orbAngMom_N[0, 3]] ] finalOrbAngMom = [ [orbAngMom_N[-1, 1], orbAngMom_N[-1, 2], orbAngMom_N[-1, 3]] ] initialRotAngMom_N = [ [rotAngMom_N[0, 1], rotAngMom_N[0, 2], rotAngMom_N[0, 3]] ] finalRotAngMom = [ [rotAngMom_N[-1, 1], rotAngMom_N[-1, 2], rotAngMom_N[-1, 3]] ] initialOrbEnergy = [ [orbEnergy[0, 1]] ] finalOrbEnergy = [ [orbEnergy[-1, 1]] ] initialRotEnergy = [ [rotEnergy[int(len(rotEnergy)/2)+1, 1]] ] finalRotEnergy = [ [rotEnergy[-1, 1]] ] plt.close('all') plt.figure() plt.clf() plt.plot(orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,1] - orbAngMom_N[0,1])/orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,2] - orbAngMom_N[0,2])/orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,3] - orbAngMom_N[0,3])/orbAngMom_N[0,3]) plt.xlabel("Time (s)") plt.ylabel("Relative Difference") unitTestSupport.writeFigureLaTeX("ChangeInOrbitalAngularMomentum" + testCase, "Change in Orbital Angular Momentum " + testCase, plt, r"width=0.8\textwidth", path) plt.figure() plt.clf() plt.plot(orbEnergy[:,0]*1e-9, (orbEnergy[:,1] - orbEnergy[0,1])/orbEnergy[0,1]) plt.xlabel("Time (s)") plt.ylabel("Relative Difference") unitTestSupport.writeFigureLaTeX("ChangeInOrbitalEnergy" + testCase, "Change in Orbital Energy " + testCase, plt, r"width=0.8\textwidth", path) plt.figure() plt.clf() plt.plot(rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,1] - rotAngMom_N[0,1])/rotAngMom_N[0,1], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,2] - rotAngMom_N[0,2])/rotAngMom_N[0,2], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,3] - rotAngMom_N[0,3])/rotAngMom_N[0,3]) plt.xlabel("Time (s)") plt.ylabel("Relative Difference") unitTestSupport.writeFigureLaTeX("ChangeInRotationalAngularMomentum" + testCase, "Change in Rotational Angular Momentum " + testCase, plt, r"width=0.8\textwidth", path) plt.figure() plt.clf() plt.plot(rotEnergy[:,0]*1e-9, (rotEnergy[:,1] - rotEnergy[0,1])/rotEnergy[0,1]) plt.xlabel("Time (s)") plt.ylabel("Relative Difference") unitTestSupport.writeFigureLaTeX("ChangeInRotationalEnergy" + testCase, "Change in Rotational Energy " + testCase, plt, r"width=0.8\textwidth", path) if show_plots: plt.show() plt.close("all") accuracy = 1e-10 for i in range(0,len(initialOrbAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Dual Hinged Rigid Body Integrated Test failed orbital angular momentum unit test") for i in range(0,len(initialRotAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Dual Hinged Rigid Body Integrated Test failed rotational angular momentum unit test") for i in range(0,len(initialOrbEnergy)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i],initialOrbEnergy[i],1,accuracy): testFailCount += 1 testMessages.append("FAILED: Dual Hinged Rigid Body Integrated Test failed orbital energy unit test") for i in range(0,len(initialRotEnergy)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i],initialRotEnergy[i],1,accuracy): testFailCount += 1 testMessages.append("FAILED: Dual Hinged Rigid Body Integrated Test failed rotational energy unit test") if testFailCount == 0: print("PASSED: " + " Dual Hinged Rigid Body Test") else: print("FAILED: Dual Hinged Rigid Body Test") print(testMessages) # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)]
[docs]@pytest.mark.parametrize("useScPlus", [True, False]) def test_dualHingedRigidBodyMotorTorque(show_plots, useScPlus): """Module Unit Test""" [testResults, testMessage] = dualHingedRigidBodyMotorTorque(show_plots, useScPlus) assert testResults < 1, testMessage
def dualHingedRigidBodyMotorTorque(show_plots, useScPlus): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages if useScPlus: scObject = spacecraft.Spacecraft() scObject.ModelTag = "spacecraftBody" else: scObject = spacecraftSystem.SpacecraftSystem() scObject.ModelTag = "spacecraftBody" scObject.primaryCentralSpacecraft.spacecraftName = scObject.ModelTag unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.01) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) unitTestSim.panel1 = dualHingedRigidBodyStateEffector.DualHingedRigidBodyStateEffector() unitTestSim.panel2 = dualHingedRigidBodyStateEffector.DualHingedRigidBodyStateEffector() # Define Variable for panel 1 unitTestSim.panel1.ModelTag = "panel1" unitTestSim.panel1.mass1 = 50.0 unitTestSim.panel1.IPntS1_S1 = [[50.0, 0.0, 0.0], [0.0, 25.0, 0.0], [0.0, 0.0, 25.0]] unitTestSim.panel1.d1 = 0.75 unitTestSim.panel1.l1 = 1.5 unitTestSim.panel1.k1 = 0.0 unitTestSim.panel1.c1 = 0.0 unitTestSim.panel1.r_H1B_B = [[0.5], [0.0], [1.0]] unitTestSim.panel1.dcm_H1B = [[-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0]] unitTestSim.panel1.mass2 = 50.0 unitTestSim.panel1.IPntS2_S2 = [[50.0, 0.0, 0.0], [0.0, 25.0, 0.0], [0.0, 0.0, 25.0]] unitTestSim.panel1.d2 = 0.75 unitTestSim.panel1.k2 = 100.0 unitTestSim.panel1.c2 = 0.0 unitTestSim.panel1.theta1Init = 0*numpy.pi/180.0 unitTestSim.panel1.theta1DotInit = 0.0 unitTestSim.panel1.theta2Init = 0.0 unitTestSim.panel1.theta2DotInit = 0.0 # set a fixed motor torque message motorMsgData = messaging.ArrayMotorTorqueMsgPayload() motorMsgData.motorTorque = [2.0, 4.0] motorMsg = messaging.ArrayMotorTorqueMsg().write(motorMsgData) unitTestSim.panel1.motorTorqueInMsg.subscribeTo(motorMsg) # Define Variables for panel 2 unitTestSim.panel2.ModelTag = "panel2" unitTestSim.panel2.mass1 = 50.0 unitTestSim.panel2.IPntS1_S1 = [[50.0, 0.0, 0.0], [0.0, 25.0, 0.0], [0.0, 0.0, 25.0]] unitTestSim.panel2.d1 = 0.75 unitTestSim.panel2.l1 = 1.5 unitTestSim.panel2.k1 = 0.0 unitTestSim.panel2.c1 = 0.0 unitTestSim.panel2.r_H1B_B = [[-0.5], [0.0], [1.0]] unitTestSim.panel2.dcm_H1B = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] unitTestSim.panel2.nameOfTheta1State = "dualHingedRigidBody2Theta1" unitTestSim.panel2.nameOfTheta1DotState = "dualHingedRigidBody2ThetaDot1" unitTestSim.panel2.mass2 = 50.0 unitTestSim.panel2.IPntS2_S2 = [[50.0, 0.0, 0.0], [0.0, 25.0, 0.0], [0.0, 0.0, 25.0]] unitTestSim.panel2.d2 = 0.75 unitTestSim.panel2.k2 = 0.0 unitTestSim.panel2.c2 = 0.0 unitTestSim.panel2.nameOfTheta2State = "dualHingedRigidBody2Theta2" unitTestSim.panel2.nameOfTheta2DotState = "dualHingedRigidBody2ThetaDot2" unitTestSim.panel2.theta1Init = 0 * numpy.pi / 180.0 unitTestSim.panel2.theta1DotInit = 0.0 unitTestSim.panel2.theta2Init = 0.0 unitTestSim.panel2.theta2DotInit = 0.0 # Add panels to spaceCraft scObjectPrimary = scObject if not useScPlus: scObjectPrimary = scObject.primaryCentralSpacecraft scObjectPrimary.addStateEffector(unitTestSim.panel1) scObjectPrimary.addStateEffector(unitTestSim.panel2) # Define mass properties of the rigid part of the spacecraft scObjectPrimary.hub.mHub = 750.0 scObjectPrimary.hub.r_BcB_B = [[0.0], [0.0], [1.0]] scObjectPrimary.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]] # Set the initial values for the states scObjectPrimary.hub.r_CN_NInit = [[0.0], [0.0], [0.0]] scObjectPrimary.hub.v_CN_NInit = [[0.0], [0.0], [0.0]] scObjectPrimary.hub.sigma_BNInit = [[0.0], [0.0], [0.0]] scObjectPrimary.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]] # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, scObject) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel1) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel2) dataLog = scObjectPrimary.scStateOutMsg.recorder() dataPanel10Log = unitTestSim.panel1.dualHingedRigidBodyOutMsgs[0].recorder() dataPanel11Log = unitTestSim.panel1.dualHingedRigidBodyOutMsgs[1].recorder() dataPanel20Log = unitTestSim.panel2.dualHingedRigidBodyOutMsgs[0].recorder() dataPanel21Log = unitTestSim.panel2.dualHingedRigidBodyOutMsgs[1].recorder() data10Log = unitTestSim.panel1.dualHingedRigidBodyConfigLogOutMsgs[0].recorder() data21Log = unitTestSim.panel2.dualHingedRigidBodyConfigLogOutMsgs[1].recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) unitTestSim.AddModelToTask(unitTaskName, dataPanel10Log) unitTestSim.AddModelToTask(unitTaskName, dataPanel11Log) unitTestSim.AddModelToTask(unitTaskName, dataPanel20Log) unitTestSim.AddModelToTask(unitTaskName, dataPanel21Log) unitTestSim.AddModelToTask(unitTaskName, data10Log) unitTestSim.AddModelToTask(unitTaskName, data21Log) if useScPlus: scLog = scObject.logger("totRotAngMomPntC_N") else: scLog = pythonVariableLogger.PythonVariableLogger({ "totRotAngMomPntC_N": lambda _: scObject.primaryCentralSpacecraft.totRotAngMomPntC_N }) unitTestSim.AddModelToTask(unitTaskName, scLog) unitTestSim.InitializeSimulation() stopTime = 10.0 unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime)) unitTestSim.ExecuteSimulation() rOut_CN_N = dataLog.r_CN_N vOut_CN_N = dataLog.v_CN_N sigma_BN = dataLog.sigma_BN thetaP1A1 = dataPanel10Log.theta thetaP1A2 = dataPanel11Log.theta thetaP2A1 = dataPanel20Log.theta thetaP2A2 = dataPanel21Log.theta rB1N = data10Log.r_BN_N[0] vB1N = data10Log.v_BN_N[0] sB1N = data10Log.sigma_BN[0] oB1N = data10Log.omega_BN_B[0] rB2N = data21Log.r_BN_N[0] vB2N = data21Log.v_BN_N[0] sB2N = data21Log.sigma_BN[0] oB2N = data21Log.omega_BN_B[0] rotAngMom_N = unitTestSupport.addTimeColumn(scLog.times(), scLog.totRotAngMomPntC_N) # Get the last sigma and position dataPos = [rOut_CN_N[-1]] truePos = [[0., 0., 0.]] initialRotAngMom_N = [[rotAngMom_N[0, 1], rotAngMom_N[0, 2], rotAngMom_N[0, 3]]] finalRotAngMom = [rotAngMom_N[-1, 1:4]] plt.close("all") plt.figure() plt.clf() plt.plot(rotAngMom_N[:, 0] * 1e-9, (rotAngMom_N[:, 1] - rotAngMom_N[0, 1]) , rotAngMom_N[:, 0] * 1e-9, (rotAngMom_N[:, 2] - rotAngMom_N[0, 2]) , rotAngMom_N[:, 0] * 1e-9, (rotAngMom_N[:, 3] - rotAngMom_N[0, 3]) ) plt.xlabel('time (s)') plt.ylabel('Ang. Momentum Difference') plt.figure() plt.clf() plt.plot(dataLog.times() * 1e-9, vOut_CN_N[:, 0], dataLog.times() * 1e-9, vOut_CN_N[:, 1], dataLog.times() * 1e-9, vOut_CN_N[:, 2]) plt.xlabel('time (s)') plt.ylabel('m/s') plt.figure() plt.clf() plt.plot(dataLog.times() * macros.NANO2SEC, sigma_BN[:, 0], color=unitTestSupport.getLineColor(0, 3), label=r'$\sigma_{1}$') plt.plot(dataLog.times() * macros.NANO2SEC, sigma_BN[:, 1], color=unitTestSupport.getLineColor(1, 3), label=r'$\sigma_{2}$') plt.plot(dataLog.times() * macros.NANO2SEC, sigma_BN[:, 2], color=unitTestSupport.getLineColor(2, 3), label=r'$\sigma_{3}$') plt.legend(loc='lower right') plt.xlabel('time (s)') plt.ylabel(r'MRP $\sigma_{B/N}$') plt.figure() plt.clf() plt.plot(dataPanel10Log.times() * macros.NANO2SEC, thetaP1A1*macros.R2D, color=unitTestSupport.getLineColor(0, 4), label=r'Panel 1 $\theta_{1}$') plt.plot(dataPanel10Log.times() * macros.NANO2SEC, thetaP1A2*macros.R2D, color=unitTestSupport.getLineColor(1, 4), label=r'Panel 1 $\theta_{2}$') plt.plot(dataPanel10Log.times() * macros.NANO2SEC, thetaP2A1 * macros.R2D, color=unitTestSupport.getLineColor(2, 4), label=r'Panel 2 $\theta_{1}$') plt.plot(dataPanel10Log.times() * macros.NANO2SEC, thetaP2A2 * macros.R2D, color=unitTestSupport.getLineColor(3, 4), label=r'Panel 2 $\theta_{2}$') plt.legend(loc='lower right') plt.xlabel('time (s)') plt.ylabel('Hinge Angles [deg]') if show_plots: plt.show() plt.close("all") accuracy = 1e-10 for i in range(0, len(truePos)): # check a vector values if not unitTestSupport.isArrayEqual(dataPos[i], truePos[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed position test") for i in range(0, len(initialRotAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqual(finalRotAngMom[i], initialRotAngMom_N[i], 3, accuracy): testFailCount += 1 testMessages.append( "FAILED: Hinged Rigid Body integrated test failed rotational angular momentum unit test") # check config log messages if not unitTestSupport.isArrayEqual(rB1N, [1.25, 0, 0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Dual Hinged Rigid Body integrated test failed panel 1 r_S1N_N config log test") if not unitTestSupport.isArrayEqual(vB1N, [0.0, 0, 0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Dual Hinged Rigid Body integrated test failed panel 1 v_S1N_N config log test") if not unitTestSupport.isArrayEqual(sB1N, [0.0, 0, 1.0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Dual Hinged Rigid Body integrated test failed panel 1 sigma_S1N config log test") if not unitTestSupport.isArrayEqual(oB1N, [0.0, 0, 0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Dual Hinged Rigid Body integrated test failed panel 1 omega_S1N_B config log test") if not unitTestSupport.isArrayEqual(rB2N, [-2.75, 0, 0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Dual Hinged Rigid Body integrated test failed panel 2 r_S2N_N config log test") if not unitTestSupport.isArrayEqual(vB2N, [0.0, 0, 0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Dual Hinged Rigid Body integrated test failed panel 2 v_S2N_N config log test") if not unitTestSupport.isArrayEqual(sB2N, [0.0, 0, 0.0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Dual Hinged Rigid Body integrated test failed panel 2 sigma_S2N config log test") if not unitTestSupport.isArrayEqual(oB2N, [0.0, 0, 0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Dual Hinged Rigid Body integrated test failed panel 2 omega_S2N_B config log test") if testFailCount == 0: print("PASSED: " + " Dual Hinged Rigid Body integrated test with motor torques") # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] if __name__ == "__main__": dualHingedRigidBodyTest(True, False, 'NoGravity') # dualHingedRigidBodyMotorTorque(True, True)