Source code for test_bore_ang_calc


# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.



#
# Bore Angle Calculation Test
#
# Purpose:  Test the proper function of the ore Angle Calculation module.
#           Proper function is tested by
#
# Author:   Rachel Mamich
# Creation Date:  Jun. 30, 2017
#

import os

import numpy
import pytest
from Basilisk.architecture import messaging
from Basilisk.simulation import boreAngCalc
from Basilisk.utilities import RigidBodyKinematics
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport

path = os.path.dirname(os.path.abspath(__file__))

class ResultsStore:
    def __init__(self):
        self.PassFail = []
    def texSnippet(self):
        for i in range(len(self.PassFail)):
            snippetName = 'Result' + str(i)
            if self.PassFail[i] == 'PASSED':
                textColor = 'ForestGreen'
            elif self.PassFail[i] == 'FAILED':
                textColor = 'Red'
            texSnippet =  r'\textcolor{' + textColor + '}{'+ self.PassFail[i] + '}'
            unitTestSupport.writeTeXSnippet(snippetName, texSnippet, path)

@pytest.fixture(scope="module")
def testFixture():
    listRes = ResultsStore()
    yield listRes
    listRes.texSnippet()

# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(True)
# The following 'parametrize' function decorator provides the parameters and expected results for each
#   of the multiple test runs for this test.
[docs]@pytest.mark.parametrize("boresightLoc, eulerLoc", [([1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]), ([-1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]), ([1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]), ([-1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]), ([1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]), ([-1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]), ([1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]), ([-1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]), ([0.0, 0.0, 1.0], [numpy.pi / 4, numpy.pi / 4, 0.0]), ([0.0, 0.0, 1.0], [3 * numpy.pi / 4, numpy.pi / 4, 0.0]), ([0.0, 0.0, 1.0], [5 * numpy.pi / 4, numpy.pi / 4, 0.0]), ([0.0, 0.0, 1.0], [-numpy.pi / 4, numpy.pi / 4, 0.0]), ([0.0, 0.0, 1.0], [numpy.pi / 4, -numpy.pi / 4, 0.0]), ([0.0, 0.0, 1.0], [3 * numpy.pi / 4, -numpy.pi / 4, 0.0]), ([0.0, 0.0, 1.0], [5 * numpy.pi / 4, -numpy.pi / 4, 0.0]), ([0.0, 0.0, 1.0], [-numpy.pi / 4, -numpy.pi / 4, 0.0]), ([1.0, 0.0, 0.0], [0.0, 0.0, 0.0])]) # # provide a unique test method name, starting with test_ def test_bore_ang_calc(testFixture, show_plots, boresightLoc, eulerLoc): """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = bore_ang_calc_func(testFixture, show_plots, boresightLoc, eulerLoc) assert testResults < 1, testMessage
# Run unit test def bore_ang_calc_func(testFixture, show_plots, boresightLoc, eulerLoc): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages # Create a sim module as an empty container unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container TotalSim = SimulationBaseClass.SimBaseClass() DynUnitTestProc = TotalSim.CreateNewProcess(unitProcessName) # create the dynamics task and specify the integration update time DynUnitTestProc.addTask(TotalSim.CreateNewTask(unitTaskName, macros.sec2nano(1.0))) spiceMessage = messaging.SpicePlanetStateMsgPayload() stateMessage = messaging.SCStatesMsgPayload() angMessage = messaging.BoreAngleMsgPayload() vehPosition = [10000.0, 0.0, 0.0] sunPosition = [10000.0, 1000.0, 0.0] stateMessage.r_BN_N = vehPosition stateMessage.v_BN_N = [-365052.0511, 0.0, 0.0] if eulerLoc[0] == 0.0: stateMessage.sigma_BN = [0.0, 0.0, 0.0] else: stateMessage.sigma_BN = RigidBodyKinematics.euler3212MRP(eulerLoc) spiceMessage.PositionVector = sunPosition spiceMessage.PlanetName = "sun" # Inertial State output Message scMsg = messaging.SCStatesMsg().write(stateMessage) # Sun Planet Data Message sunMsg = messaging.SpicePlanetStateMsg().write(spiceMessage) # Initialize the spice modules that we are using. BACObject = boreAngCalc.BoreAngCalc() BACObject.ModelTag = "solarArrayBoresight" BACObject.boreVec_B = boresightLoc # boresight in body frame BACObject.scStateInMsg.subscribeTo(scMsg) BACObject.celBodyInMsg.subscribeTo(sunMsg) TotalSim.AddModelToTask(unitTaskName, BACObject) # # Configure simulation TotalSim.ConfigureStopTime(int(1.0 * 1E9)) dataLog = BACObject.angOutMsg.recorder() TotalSim.AddModelToTask(unitTaskName, dataLog) BACObjectLog = BACObject.logger("boreVec_Po") TotalSim.AddModelToTask(unitTaskName, BACObjectLog) # Execute simulation TotalSim.InitializeSimulation() TotalSim.ExecuteSimulation() ################################################################################################################### # # Begin testing module results to truth values simMiss = dataLog.missAngle simAz = dataLog.azimuth simBoreVecPt = BACObjectLog.boreVec_Po # Truth values dcm_BN = RigidBodyKinematics.MRP2C(stateMessage.sigma_BN) relPosVector = numpy.subtract(spiceMessage.PositionVector, stateMessage.r_BN_N) relVelVector = numpy.subtract(spiceMessage.VelocityVector, stateMessage.v_BN_N) magRelVelVec = numpy.sqrt(relVelVector[0] ** 2 + relVelVector[1] ** 2 + relVelVector[2] ** 2) if magRelVelVec == 0: secPointVector = numpy.zeros((1, 3)) magSecPtVec = 0 else: secPointVector = numpy.cross(relPosVector, relVelVector) / numpy.linalg.norm(numpy.cross(relPosVector, relVelVector)) magSecPtVec = 1 primPointVector = relPosVector / numpy.linalg.norm(relPosVector) # r_p/b_N dcm_PoN = numpy.zeros((3, 3)) dcm_PoN[0, 0:2] = primPointVector[0:2] magPrimPtVec = numpy.sqrt(primPointVector[0] ** 2 + primPointVector[1] ** 2 + primPointVector[2] ** 2) if magPrimPtVec != 0 and magSecPtVec != 0: dcm_PoN_2 = numpy.cross(primPointVector, secPointVector) / numpy.linalg.norm( numpy.cross(primPointVector, secPointVector)) for i in range(3): dcm_PoN[2, i] = dcm_PoN_2[i] dcm_PoN_1 = numpy.cross(dcm_PoN_2, primPointVector) for i in range(3): dcm_PoN[1, i] = dcm_PoN_1[i] dcm_BPo = numpy.dot(dcm_BN, dcm_PoN.transpose()) vecBore_B = numpy.zeros((3, 1)) for i in range(3): vecBore_B[i, 0] = BACObject.boreVec_B[i][0] boreVecPoint = numpy.dot(numpy.transpose(dcm_BPo), vecBore_B) boreVecPoint_1 = [] for i in range(3): boreVecPoint_1.append(boreVecPoint[i, 0]) boreVecPoint_1 = numpy.array(boreVecPoint_1) #################################################################################################################### # attempt calculation in body frame r_B = numpy.dot(dcm_BN, stateMessage.r_BN_N) # BN * N = B # Set tolersnce AllowTolerance = 1E-10 boreVecPoint_final = [numpy.ndarray.tolist(boreVecPoint_1)] simBoreVecPt_final = [simBoreVecPt[0]] testFailCount, testMessages = unitTestSupport.compareArray(boreVecPoint_final, simBoreVecPt_final, AllowTolerance, "Calculating the vector boreVec_Po.", testFailCount, testMessages) # Truth values #boreVecPoint_1 = [0.0, 1.0, 0.0] baselinePoint = [1.0, 0.0, 0.0] baselinePoint = numpy.array(baselinePoint) dotValue = numpy.dot(boreVecPoint_1, baselinePoint) r_N = numpy.dot(numpy.transpose(dcm_BN), BACObject.boreVec_B) r_N = [item for sublist in r_N for item in sublist] baselineProj = numpy.dot(numpy.transpose(dcm_PoN), baselinePoint) dotValue_2 = numpy.dot(r_N, baselineProj) boresightMissAng = numpy.arccos(dotValue) boresightMissAng_2 = numpy.arccos(dotValue_2) # boresight calc using body frame if boresightMissAng == numpy.pi / 2: simAz_final = numpy.array(simAz[-1]) boresightAzimuth = simAz_final print("The miss angle is 0, therefore the miss angle is ill defined!") else: boresightAzimuth = numpy.arctan2(boreVecPoint_1[2], boreVecPoint_1[1]) # Next Check AllowTolerance = 1E-10 simMiss_final = numpy.array(simMiss[-1]) if (boresightMissAng - simMiss_final) > AllowTolerance: # Skip test days that are Sunday because of the end of a GPS week testFailCount += 1 testMessages.append( "FAILED: Calculating the miss angle of the boresight failed with difference of: %(DiffVal)f \n" % \ {"DiffVal": boresightMissAng - simMiss_final}) simAz_final = numpy.array(simAz[-1]) if (boresightAzimuth - simAz_final) > AllowTolerance: # Skip test days that are Sunday because of the end of a GPS week testFailCount += 1 testMessages.append( "FAILED: Calculating the azimuth angle of the boresight failed with difference of: %(DiffVal)f \n" % \ {"DiffVal": boresightAzimuth - simAz_final}) # print out success message if no error were found if testFailCount == 0: print("PASSED") testFixture.PassFail.append("PASSED") else: print(testMessages) testFixture.PassFail.append("FAILED") # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # This statement below ensures that the unit test scrip can be run as a # stand-along python script # if __name__ == "__main__": bore_ang_calc_func(ResultsStore(), False, # show_plots [1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0])