Source code for test_attTrackingError


# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.


#
#   Unit Test Script
#   Module Name:        attTrackingError
#   Author:             Hanspeter Schaub
#   Creation Date:      January 15, 2016
#

import inspect
import os

import numpy as np

# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))







# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport              # general support file with common unit test functions
from Basilisk.fswAlgorithms import attTrackingError                  # import the module that is to be tested
from Basilisk.utilities import macros
from Basilisk.utilities import RigidBodyKinematics as rbk
from Basilisk.architecture import messaging

# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]def test_attTrackingError(show_plots): """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = subModuleTestFunction(show_plots) assert testResults < 1, testMessage
def subModuleTestFunction(show_plots): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = attTrackingError.attTrackingError() module.ModelTag = "attTrackingError" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) vector = [0.01, 0.05, -0.55] module.sigma_R0R = vector # # Navigation Message # NavStateOutData = messaging.NavAttMsgPayload() # Create a structure for the input message sigma_BN = [0.25, -0.45, 0.75] NavStateOutData.sigma_BN = sigma_BN omega_BN_B = [-0.015, -0.012, 0.005] NavStateOutData.omega_BN_B = omega_BN_B navStateInMsg = messaging.NavAttMsg().write(NavStateOutData) # # Reference Frame Message # RefStateOutData = messaging.AttRefMsgPayload() # Create a structure for the input message sigma_RN = [0.35, -0.25, 0.15] RefStateOutData.sigma_RN = sigma_RN omega_RN_N = [0.018, -0.032, 0.015] RefStateOutData.omega_RN_N = omega_RN_N domega_RN_N = [0.048, -0.022, 0.025] RefStateOutData.domega_RN_N = domega_RN_N refInMsg = messaging.AttRefMsg().write(RefStateOutData) # Setup logging on the test module output message so that we get all the writes to it dataLog = module.attGuidOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # connect messages module.attNavInMsg.subscribeTo(navStateInMsg) module.attRefInMsg.subscribeTo(refInMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(macros.sec2nano(0.3)) # seconds to stop simulation # Begin the simulation time run set above unitTestSim.ExecuteSimulation() # # check sigma_BR # moduleOutput = dataLog.sigma_BR[0] sigma_RN2 = rbk.addMRP(np.array(sigma_RN), -np.array(vector)) RN = rbk.MRP2C(sigma_RN2) BN = rbk.MRP2C(np.array(sigma_BN)) BR = np.dot(BN, RN.T) # set the filtered output truth states trueVector = rbk.C2MRP(BR) # compare the module results to the truth values accuracy = 1e-12 if not unitTestSupport.isArrayEqual(moduleOutput, trueVector, 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_BR unit test\n") unitTestSupport.writeTeXSnippet("passFail_sigBR", "FAILED", path) else: unitTestSupport.writeTeXSnippet("passFail_sigBR", "PASSED", path) # # check omega_BR_B # moduleOutput = dataLog.omega_BR_B[0] # set the filtered output truth states trueVector = np.array(omega_BN_B) - np.dot(BN, np.array(omega_RN_N)) # compare the module results to the truth values if not unitTestSupport.isArrayEqual(moduleOutput, trueVector, 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_BR_B unit test\n") unitTestSupport.writeTeXSnippet("passFail_omega_BR_B", "FAILED", path) else: unitTestSupport.writeTeXSnippet("passFail_omega_BR_B", "PASSED", path) # # check omega_RN_B # moduleOutput = dataLog.omega_RN_B[0] # set the filtered output truth states trueVector = np.dot(BN, np.array(omega_RN_N)) # compare the module results to the truth values if not unitTestSupport.isArrayEqual(moduleOutput,trueVector,3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_RN_N unit test\n") unitTestSupport.writeTeXSnippet("passFail_omega_RN_B", "FAILED", path) else: unitTestSupport.writeTeXSnippet("passFail_omega_RN_B", "PASSED", path) # # check domega_RN_B # moduleOutput = dataLog.domega_RN_B[0] # set the filtered output truth states trueVector = np.dot(BN, np.array(domega_RN_N)) # compare the module results to the truth values if not unitTestSupport.isArrayEqual(moduleOutput,trueVector,3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed domega_RN_B unit test\n") unitTestSupport.writeTeXSnippet("passFail_domega_RN_B", "FAILED", path) else: unitTestSupport.writeTeXSnippet("passFail_domega_RN_B", "PASSED", path) # Note that we can continue to step the simulation however we feel like. # Just because we stop and query data does not mean everything has to stop for good unitTestSim.ConfigureStopTime(macros.sec2nano(0.6)) # run an additional 0.6 seconds unitTestSim.ExecuteSimulation() if testFailCount == 0: print("PASSED: " + "attTrackingError test") else: print(testMessages) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_attTrackingError(False)