Source code for test_VSCMGStateEffector_integrated


# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.


import inspect
import math
import os

import numpy as np
import pytest

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))

from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions
import matplotlib as mpl
import matplotlib.pyplot as plt
from Basilisk.simulation import spacecraft
from Basilisk.utilities import macros
from Basilisk.simulation import gravityEffector
from Basilisk.simulation import vscmgStateEffector
from Basilisk.architecture import messaging

mpl.rc("figure", figsize=(5.75,4))


def defaultVSCMG():
    VSCMG = messaging.VSCMGConfigMsgPayload()

    VSCMG.rGB_B = [[0.],[0.],[0.]]
    VSCMG.gsHat0_B = [[0.],[0.],[0.]]
    VSCMG.gtHat0_B = [[0.],[0.],[0.]]
    VSCMG.ggHat_B = [[0.],[0.],[0.]]
    VSCMG.u_s_max = -1
    VSCMG.u_s_min = -1
    VSCMG.u_s_f = 0.
    VSCMG.wheelLinearFrictionRatio = -1
    VSCMG.u_g_current = 0.
    VSCMG.u_g_max = -1
    VSCMG.u_g_min = -1
    VSCMG.u_g_f = 0.
    VSCMG.gimbalLinearFrictionRatio = -1
    VSCMG.Omega = 0.
    VSCMG.gamma = 0.
    VSCMG.gammaDot = 0.
    VSCMG.Omega_max = 6000. * macros.RPM
    VSCMG.gammaDot_max = -1
    VSCMG.IW1 = 100./VSCMG.Omega_max # 0.159154943092
    VSCMG.IW2 = 0.5*VSCMG.IW1 # 0.0795774715459
    VSCMG.IW3 = 0.5*VSCMG.IW1 # 0.0795774715459
    VSCMG.IG1 = 0.1
    VSCMG.IG2 = 0.2
    VSCMG.IG3 = 0.3
    VSCMG.U_s = 4.8e-06 * 1e4
    VSCMG.U_d = 1.54e-06 * 1e4
    VSCMG.l = 0.01
    VSCMG.L = 0.1
    VSCMG.rGcG_G = [[0.0001],[-0.02],[0.1]]
    VSCMG.massW = 6.
    VSCMG.massG = 6.
    VSCMG.VSCMGModel = 0
    return VSCMG

def computeFFT(y,dt):
    Fs = 1.0/dt  # sampling rate
    Ts = dt # sampling interval
    n = len(y) # length of the signal
    k = np.arange(n)
    T = n/Fs
    frq = k/T # two sides frequency range
    frq = frq[list(range(n//2))] # one side frequency range
    Y = np.fft.fft(y)/n # fft computing and normalization
    Y = Y[list(range(n//2))]
    Y = abs(Y)
    return [frq,Y]

def findPeaks(Y,maxfind):
        peakIdxs = np.r_[True, Y[1:] > Y[:-1]] & np.r_[Y[:-1] > Y[1:], True]
        peakIdxs[0] = False
        peakIdxs[-1] = False

        peakIdxs = np.array(np.where(peakIdxs==True))[0]
        threshold = np.sort(Y[peakIdxs])[-maxfind]
        peakIdxs = peakIdxs[np.where(Y[peakIdxs] >= threshold)[0]]

        return peakIdxs


[docs]@pytest.mark.parametrize("useFlag, testCase", [ (False,'BalancedWheels'), (False,'JitterSimple'), (False,'JitterFullyCoupled'), (False,'JitterFullyCoupledGravity'), ]) # uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed # @pytest.mark.skipif(conditionstring) # uncomment this line if this test has an expected failure, adjust message as needed # @pytest.mark.xfail() # need to update how the RW states are defined # provide a unique test method name, starting with test_ def test_VSCMGIntegratedTest(show_plots,useFlag,testCase): """Module Unit Test""" [testResults, testMessage] = VSCMGIntegratedTest(show_plots,useFlag,testCase) assert testResults < 1, testMessage
def VSCMGIntegratedTest(show_plots,useFlag,testCase): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages scObject = spacecraft.Spacecraft() scObject.ModelTag = "spacecraftBody" unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread if testCase == 'JitterFullyCoupled' or testCase == 'JitterFullyCoupledGravity': dt = 0.00001 duration = 0.01 else: dt = 0.001 duration = 1. testProcessRate = macros.sec2nano(dt) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # add RW devices VSCMGs = [] ang = 54.75 * np.pi/180 VSCMGs.append(defaultVSCMG()) VSCMGs[0].gsHat0_B = [[1.0], [0.0], [0.0]] VSCMGs[0].gtHat0_B = [[0.0], [1.0], [0.0]] VSCMGs[0].ggHat_B = [[0.0], [0.0], [1.0]] VSCMGs[0].Omega = 2000 * macros.RPM VSCMGs[0].gamma = 0. VSCMGs[0].gammaDot = 0.06 VSCMGs[0].rGB_B = [[0.1], [0.002], [-0.02]] VSCMGs.append(defaultVSCMG()) VSCMGs[1].gsHat0_B = [[0.0], [1.0], [0.0]] VSCMGs[1].ggHat_B = [[math.cos(ang)], [0.0], [math.sin(ang)]] VSCMGs[1].gtHat0_B = np.cross(np.array([math.cos(ang), 0.0, math.sin(ang)]),np.array([0.0, 1.0, 0.0])) VSCMGs[1].Omega = 350 * macros.RPM VSCMGs[1].gamma = 0. VSCMGs[1].gammaDot = 0.011 VSCMGs[1].rGB_B = [[0.0], [-0.05], [0.0]] VSCMGs.append(defaultVSCMG()) VSCMGs[2].gsHat0_B = [[0.0], [-1.0], [0.0]] VSCMGs[2].ggHat_B = [[-math.cos(ang)], [0.0], [math.sin(ang)]] VSCMGs[2].gtHat0_B = np.cross(np.array([-math.cos(ang), 0.0, math.sin(ang)]),np.array([0.0, -1.0, 0.0])) VSCMGs[2].Omega = -900 * macros.RPM VSCMGs[2].gamma = 0. VSCMGs[2].gammaDot = -0.003 VSCMGs[2].rGB_B = [[-0.1], [0.05], [0.05]] if testCase == 'BalancedWheels': VSCMGModel = 0 elif testCase == 'JitterSimple': VSCMGModel = 1 elif testCase == 'JitterFullyCoupled' or testCase == 'JitterFullyCoupledGravity': VSCMGModel = 2 for VSCMG in VSCMGs: VSCMG.VSCMGModel = VSCMGModel if testCase == 'JitterFullyCoupled': VSCMGs = [VSCMGs[0],VSCMGs[2]] N = len(VSCMGs) # create VSCMG object container and tie to spacecraft object rwStateEffector = vscmgStateEffector.VSCMGStateEffector() rwStateEffector.ModelTag = "VSCMGs" for item in VSCMGs: rwStateEffector.AddVSCMG(item) scObject.addStateEffector(rwStateEffector) # set RW torque command cmdArray = messaging.VSCMGArrayTorqueMsgPayload() if testCase == 'BalancedWheels' or testCase == 'JitterFullyCoupled': cmdArray.wheelTorque = [0.0, 0.0, 0.0] # [Nm] cmdArray.gimbalTorque = [0.0, 0.0, 0.0] # [Nm] else: cmdArray.wheelTorque = [0.001, 0.005, -0.009] # [Nm] cmdArray.gimbalTorque = [0.008, -0.0015, -0.006] # [Nm] cmdMsg = messaging.VSCMGArrayTorqueMsg().write(cmdArray) rwStateEffector.cmdsInMsg.subscribeTo(cmdMsg) # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, rwStateEffector) unitTestSim.AddModelToTask(unitTaskName, scObject) if testCase != 'JitterFullyCoupled': unitTestSim.earthGravBody = gravityEffector.GravBodyData() unitTestSim.earthGravBody.planetName = "earth_planet_data" unitTestSim.earthGravBody.mu = 0.3986004415E+15 # meters! unitTestSim.earthGravBody.isCentralBody = True scObject.gravField.gravBodies = spacecraft.GravBodyVector([unitTestSim.earthGravBody]) scObject.hub.mHub = 750.0 scObject.hub.r_BcB_B = [[-0.0002], [0.0001], [0.1]] scObject.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]] if testCase == 'JitterFullyCoupled': scObject.hub.r_CN_NInit = [[0.1], [-0.2], [0.3]] scObject.hub.v_CN_NInit = [[-0.4], [0.5], [-0.8]] else: scObject.hub.r_CN_NInit = [[-4020338.690396649], [7490566.741852513], [5248299.211589362]] scObject.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]] scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]] scObject.hub.omega_BN_BInit = [[0.08], [0.01], [0.0]] # log data dataLog = scObject.scStateOutMsg.recorder() speedLog = rwStateEffector.speedOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) unitTestSim.AddModelToTask(unitTaskName, speedLog) scObjectLog = scObject.logger(["totOrbAngMomPntN_N", "totRotAngMomPntC_N", "totOrbEnergy", "totRotEnergy"]) unitTestSim.AddModelToTask(unitTaskName, scObjectLog) unitTestSim.ConfigureStopTime(macros.sec2nano(duration)) unitTestSim.InitializeSimulation() posRef = scObject.dynManager.getStateObject("hubPosition") sigmaRef = scObject.dynManager.getStateObject("hubSigma") unitTestSim.ExecuteSimulation() orbAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbAngMomPntN_N) rotAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotAngMomPntC_N) rotEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotEnergy) orbEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbEnergy) wheelSpeeds = speedLog.wheelSpeeds gimbalAngles = speedLog.gimbalAngles gimbalRates = speedLog.gimbalRates sigmaData = dataLog.sigma_BN omegaData = dataLog.omega_BN_B dataPos = posRef.getState() dataSigma = sigmaRef.getState() dataPos = [[dataPos[0][0], dataPos[1][0], dataPos[2][0]]] dataSigma = [[dataSigma[0][0], dataSigma[1][0], dataSigma[2][0]]] if testCase == 'BalancedWheels': truePos = [ [-4025537.664298894, 7487128.570444949, 5249339.643828076] ] trueSigma = [ [0.0185829763256, 0.00212563436704, -0.00118728497031] ] elif testCase == 'JitterSimple': truePos = [ [-4025537.659558947, 7487128.570662447, 5249339.653774626] ] trueSigma = [ [0.018774477186285467, 0.0018376842577357564, -0.00023633044221463834] ] elif testCase == 'JitterFullyCoupled': truePos = [ [0.0970572658434, -0.195562924079, 0.191874379545] ] trueSigma = [ [0.000201909373901, 2.9217809421e-05, 4.00231302121e-06] ] elif testCase == 'JitterFullyCoupledGravity': truePos = [ [-4020390.68802, 7490532.37502, 5248309.52745] ] trueSigma = [ [0.000201662012765, 2.92123940252e-05, 4.15606551702e-06] ] initialOrbAngMom_N = [ [orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]] ] finalOrbAngMom = [ [orbAngMom_N[-1,1], orbAngMom_N[-1,2], orbAngMom_N[-1,3]] ] initialRotAngMom_N = [ [rotAngMom_N[0,1], rotAngMom_N[0,2], rotAngMom_N[0,3]] ] finalRotAngMom = [ [rotAngMom_N[-1,1], rotAngMom_N[-1,2], rotAngMom_N[-1,3]] ] initialOrbEnergy = [ [orbEnergy[0,1]] ] finalOrbEnergy = [ [orbEnergy[-1,1]] ] initialRotEnergy = [ [rotEnergy[0,1]] ] finalRotEnergy = [ [rotEnergy[-1,1]] ] plt.close("all") plt.figure() plt.plot(orbAngMom_N[:,0]*1e-9, orbAngMom_N[:,1] - orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, orbAngMom_N[:,2] - orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, orbAngMom_N[:,3] - orbAngMom_N[0,3]) plt.title("Change in Orbital Angular Momentum") unitTestSupport.writeFigureLaTeX("ChangeInOrbitalAngularMomentum" + testCase, "Change in Orbital Angular Momentum " + testCase, plt, "width=0.80\\textwidth", path) plt.figure() plt.plot(rotAngMom_N[:,0]*1e-9, rotAngMom_N[:,1] - rotAngMom_N[0,1], rotAngMom_N[:,0]*1e-9, rotAngMom_N[:,2] - rotAngMom_N[0,2], rotAngMom_N[:,0]*1e-9, rotAngMom_N[:,3] - rotAngMom_N[0,3]) plt.title("Change in Rotational Angular Momentum") unitTestSupport.writeFigureLaTeX("ChangeInOrbitalEnergy" + testCase, "Change in Orbital Energy " + testCase, plt, "width=0.80\\textwidth", path) plt.figure() plt.plot(orbEnergy[:,0]*1e-9, orbEnergy[:,1] - orbEnergy[0,1]) plt.title("Change in Orbital Energy") unitTestSupport.writeFigureLaTeX("ChangeInRotationalAngularMomentum" + testCase, "Change in Rotational Angular Momentum " + testCase, plt, "width=0.80\\textwidth", path) plt.figure() plt.plot(rotEnergy[:,0]*1e-9, rotEnergy[:,1] - rotEnergy[0,1]) plt.title("Change in Rotational Energy") unitTestSupport.writeFigureLaTeX("ChangeInRotationalEnergy" + testCase, "Change in Rotational Energy " + testCase, plt, "width=0.80\\textwidth", path) plt.figure() for i in range(0,N): plt.subplot(4,1,i+1) plt.plot(speedLog.times()*1.0E-9, wheelSpeeds[:,i] / (2.0 * math.pi) * 60, label='RWA' + str(i)) plt.xlabel('Time (s)') plt.ylabel(r'RW' + str(i) + r' $\Omega$ (RPM)') plt.figure() for i in range(0,N): plt.subplot(4,1,i+1) plt.plot(speedLog.times()*1.0E-9, gimbalAngles[:,i], label=str(i)) plt.xlabel('Time (s)') plt.ylabel(r'$\gamma_'+str(i)+'$ (rad)') plt.figure() for i in range(0,N): plt.subplot(4,1,i+1) plt.plot(speedLog.times()*1.0E-9, gimbalRates[:,i] * 180/np.pi, label=str(i)) plt.xlabel('Time (s)') plt.ylabel(r'$\dot{\gamma}_'+str(i)+'$ (d/s)') plt.figure() for i in range(0,N): plt.subplot(4,1,i+1) plt.plot(dataLog.times()*1.0E-9, sigmaData[:,i], label='MRP' + str(i)) plt.xlabel('Time (s)') plt.ylabel(r'MRP b' + str(i)) plt.figure() for i in range(0,N): plt.subplot(4,1,i+1) plt.plot(dataLog.times()*1.0E-9, omegaData[:,i] * 180/math.pi, label='omega' + str(i)) plt.xlabel('Time (s)') plt.ylabel(r'b' + str(i) + r' $\omega$ (d/s)') if testCase != 'BalancedWheels' and testCase != 'JitterFullyCoupledGravity': istart = int(.01/dt) sigmaDataCut = sigmaData#sigmaData[istart:,:] thetaData = np.empty([len(sigmaDataCut[:,0]),2]) thetaData[:,0] = sigmaDataCut[:,0] for i in range(0,len(thetaData[:,0])): thetaData[i,1] = 4*np.arctan(np.linalg.norm(sigmaDataCut[i,1:])) if testCase == 'JitterSimple': fitOrd = 11 else: fitOrd = 9 thetaFit = np.empty([len(sigmaDataCut[:,0]),2]) thetaFit[:,0] = thetaData[:,0] p = np.polyfit(thetaData[:,0]*1e-9,thetaData[:,1],fitOrd) thetaFit[:,1] = np.polyval(p,thetaFit[:,0]*1e-9) plt.figure() plt.plot(thetaData[:,0]*1e-9, thetaData[:,1]-thetaFit[:,1]) plt.title("Principle Angle Fit") plt.xlabel('Time (s)') plt.ylabel(r'$\theta$ (deg)') [frq,Y] = computeFFT(thetaData[:,1]-thetaFit[:,1],dt) peakIdxs = findPeaks(Y,N) wheelSpeeds_data = np.array(frq[peakIdxs])*60. wheelSpeeds_true = np.sort(abs(np.array([VSCMG.Omega/macros.RPM for VSCMG in VSCMGs]))) fig, ax = plt.subplots(2,1) ax[0].plot(thetaFit[:,0]*1e-9,thetaData[:,1]-thetaFit[:,1]) ax[0].set_xlabel('Time') ax[0].set_ylabel('Amplitude') ax[1].plot(frq,abs(Y),'r') ax[1].set_xlabel('Freq (Hz)') ax[1].set_ylabel('Magnitude') ax[1].plot(frq[peakIdxs],Y[peakIdxs],'bo') plt.xlim((0,VSCMGs[0].Omega_max/macros.RPM/60.)) plt.figure() plt.plot(thetaData[:,0]*1e-9, thetaData[:,1]) plt.title("Principle Angle") plt.xlabel('Time (s)') plt.ylabel(r'$\theta$ (deg)') if show_plots == True: plt.show() plt.close('all') accuracy = 1e-7 for i in range(0,len(truePos)): # check a vector values if not unitTestSupport.isArrayEqualRelative(dataPos[i],truePos[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: VSCMG Integrated Test failed pos unit test") for i in range(0,len(trueSigma)): # check a vector values if not unitTestSupport.isArrayEqualRelative(dataSigma[i],trueSigma[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: VSCMG Integrated Test failed attitude unit test") if testCase == 'JitterSimple': for i in range(N): # check a vector values if not abs(wheelSpeeds_data[i] - wheelSpeeds_true[i]) / wheelSpeeds_true[i] < .09: testFailCount += 1 testMessages.append("FAILED: VSCMG Integrated Test failed jitter unit test") accuracy = 1e-10 if testCase == 'BalancedWheels' or testCase == 'JitterFullyCoupled': for i in range(0,len(initialOrbAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: VSCMG Integrated Test failed orbital angular momentum unit test") for i in range(0,len(initialRotAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: VSCMG Integrated Test failed rotational angular momentum unit test") for i in range(0, len(initialOrbEnergy)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i], initialOrbEnergy[i], 1, accuracy): testFailCount += 1 testMessages.append("FAILED: VSCMG Integrated Test failed orbital energy unit test") for i in range(0, len(initialRotEnergy)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i], initialRotEnergy[i], 1, accuracy): testFailCount += 1 testMessages.append("FAILED: VSCMG Integrated Test failed rot energy unit test") # print out success message if no errors were found if testFailCount == 0: print("PASSED ") colorText = 'ForestGreen' passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}' # Write some snippets for AutoTex snippetName = testCase + 'PassFail' unitTestSupport.writeTeXSnippet(snippetName, passedText, path) elif testFailCount > 0: colorText = 'Red' passedText = r'\textcolor{' + colorText + '}{' + "FAILED" + '}' # Write some snippets for AutoTex snippetName = testCase + 'PassFail' unitTestSupport.writeTeXSnippet(snippetName, passedText, path) if testFailCount == 0: print("PASSED: " + " VSCMG Integrated Sim Test") else: print(testMessages) assert testFailCount < 1, testMessages # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] if __name__ == "__main__": VSCMGIntegratedTest(False,False,'JitterFullyCoupled')