Source code for test_PRV_Steering

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
#   Unit Test Script
#   Module Name:        PRV_Steering
#   Author:             Hanspeter Schaub
#   Creation Date:      December 18, 2015
#
import matplotlib.pyplot as plt
# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.
import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import prvSteering
from Basilisk.fswAlgorithms import rateServoFullNonlinear
#   Import all of the modules that we are going to call in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport


# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]@pytest.mark.parametrize("simCase", [0, 1]) def test_prvSteering(show_plots, simCase): # update "subModule" in this function name to reflect the module name """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = subModuleTestFunction(show_plots, simCase) assert testResults < 1, testMessage
def subModuleTestFunction(show_plots, simCase): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = prvSteering.prvSteering() module.ModelTag = "prvSteering" servo = rateServoFullNonlinear.rateServoFullNonlinear() servo.ModelTag = "rate_servo" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) unitTestSim.AddModelToTask(unitTaskName, servo) # configure BSK modules module.K1 = 0.15 module.K3 = 1.0 module.omega_max = 1.5*macros.D2R servo.Ki = 0.01 servo.P = 150.0 servo.integralLimit = 2./servo.Ki * 0.1 servo.knownTorquePntB_B = [0., 0., 0.] # Create input message and size it because the regular creator of that message # is not part of the test. # attGuidOut Message: guidCmdData = messaging.AttGuidMsgPayload() # Create a structure for the input message sigma_BR = [] if simCase == 0: sigma_BR = np.array([0.3, -0.5, 0.7]) if simCase == 1: sigma_BR = np.array([0, 0, 0]) guidCmdData.sigma_BR = sigma_BR omega_BR_B = np.array([0.010, -0.020, 0.015]) guidCmdData.omega_BR_B = omega_BR_B omega_RN_B = np.array([-0.02, -0.01, 0.005]) guidCmdData.omega_RN_B = omega_RN_B domega_RN_B = np.array([0.0002, 0.0003, 0.0001]) guidCmdData.domega_RN_B = domega_RN_B guidInMsg = messaging.AttGuidMsg().write(guidCmdData) # vehicleConfigData Message: vehicleConfigOut = messaging.VehicleConfigMsgPayload() I = [1000., 0., 0., 0., 800., 0., 0., 0., 800.] vehicleConfigOut.ISCPntB_B = I vcInMsg = messaging.VehicleConfigMsg().write(vehicleConfigOut) # wheelSpeeds Message rwSpeedMessage = messaging.RWSpeedMsgPayload() Omega = [10.0, 25.0, 50.0, 100.0] rwSpeedMessage.wheelSpeeds = Omega rwSpeedInMsg = messaging.RWSpeedMsg().write(rwSpeedMessage) # wheelConfigData message def writeMsgInWheelConfiguration(): rwConfigParams = messaging.RWArrayConfigMsgPayload() rwConfigParams.GsMatrix_B = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] rwConfigParams.JsList = [0.1, 0.1, 0.1, 0.1] rwConfigParams.numRW = 4 rwParamInMsg = messaging.RWArrayConfigMsg().write(rwConfigParams) return rwParamInMsg rwParamInMsg = writeMsgInWheelConfiguration() # wheelAvailability message def writeMsgInWheelAvailability(): rwAvailabilityMessage = messaging.RWAvailabilityMsgPayload() avail = [messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE] rwAvailabilityMessage.wheelAvailability = avail rwAvailInMsg = messaging.RWAvailabilityMsg().write(rwAvailabilityMessage) return rwAvailInMsg rwAvailInMsg = writeMsgInWheelAvailability() # Setup logging on the test module output message so that we get all the writes to it dataLog = servo.cmdTorqueOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # connect input and output messages module.guidInMsg.subscribeTo(guidInMsg) servo.vehConfigInMsg.subscribeTo(vcInMsg) servo.guidInMsg.subscribeTo(guidInMsg) servo.rwParamsInMsg.subscribeTo(rwParamInMsg) servo.rwAvailInMsg.subscribeTo(rwAvailInMsg) servo.rwSpeedsInMsg.subscribeTo(rwSpeedInMsg) servo.rateSteeringInMsg.subscribeTo(module.rateCmdOutMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Step the simulation to 3*process rate so 4 total steps including zero unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() servo.Reset(1) # this module reset function needs a time input (in NanoSeconds) unitTestSim.ConfigureStopTime(macros.sec2nano(2.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() # set the filtered output truth states trueVector = [] if simCase == 0: trueVector = [ [-2.9352922876097969, +6.2831737715827778, -4.0554726129822907] ,[-2.9352922876097969, +6.2831737715827778, -4.0554726129822907] ,[-2.9353853745179044, +6.2833455830962901, -4.0556481491012084] ,[-2.9352922876097969, +6.2831737715827778, -4.0554726129822907] ,[-2.9353853745179044, +6.2833455830962901, -4.0556481491012084] ] if simCase == 1: trueVector = [ [-1.39, 3.79, -1.39] ,[-1.39, 3.79, -1.39] ,[-1.39005, 3.7901, -1.390075] ,[-1.39, 3.79, -1.39] ,[-1.39005, 3.7901, -1.390075] ] # compare the module results to the truth values accuracy = 1e-12 for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(dataLog.torqueRequestBody[i], trueVector[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed torqueRequestBody unit test at t=" + str(dataLog.times()[i]*macros.NANO2SEC) + "sec\n") # If the argument provided at commandline "--show_plots" evaluates as true, # plot all figures if show_plots: plt.show() if testFailCount == 0: print("PASSED: " + module.ModelTag) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a stand-along python scripts # authmatically executes the runUnitTest() method # if __name__ == "__main__": test_prvSteering(True, 1)