Source code for test_MRP_steeringUnit

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#

import matplotlib.pyplot as plt
import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import mrpSteering  # import the module that is to be tested
from Basilisk.utilities import RigidBodyKinematics
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions


[docs]@pytest.mark.parametrize("K1", [0.15, 0]) @pytest.mark.parametrize("K3", [1, 0]) @pytest.mark.parametrize("omegaMax", [1.5 * macros.D2R, 0.001 * macros.D2R]) # uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed # @pytest.mark.skipif(conditionstring) # uncomment this line if this test has an expected failure, adjust message as needed # @pytest.mark.xfail() # need to update how the RW states are defined # provide a unique test method name, starting with test_ def test_mrp_steering_tracking(show_plots, K1, K3, omegaMax): r""" **Validation Test Description** This unit test compares the computed :math:`\pmb\omega_{\mathcal{B}^{\ast}/\mathcal{R}}` and :math:`\pmb\omega_{\mathcal{B}^{\ast}/\mathcal{R}}'` to truth values computed in the python unit test. **Test Parameters** This test checks a set of gains ``K1``, ``K3`` and ``omegaMax`` on a rigid body with no external torques, and with a fixed input reference attitude message. The commanded rate solution is evaluated against python computed values at 0s, 0.5s and 1s to within a tolerance of :math:`10^{-12}`. :param show_plots: flag indicating if plots should be shown. :param K1: The control gain :math:`K_1` :param K3: The control gain :math:`K_3` :param omegaMax: The control gain :math:`\omega_{\text{max}}` :return: void """ [testResults, testMessage] = mrp_steering_tracking(show_plots, K1, K3, omegaMax) assert testResults < 1, testMessage
def mrp_steering_tracking(show_plots, K1, K3, omegaMax): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = mrpSteering.mrpSteering() module.ModelTag = "mrpSteering" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) # Initialize the test module configuration data module.K1 = K1 module.K3 = K3 module.omega_max = omegaMax # Create input message and size it because the regular creator of that message # is not part of the test. guidCmdData = messaging.AttGuidMsgPayload() # Create a structure for the input message sigma_BR = np.array([0.3, -0.5, 0.7]) guidCmdData.sigma_BR = sigma_BR omega_BR_B = np.array([0.010, -0.020, 0.015]) guidCmdData.omega_BR_B = omega_BR_B omega_RN_B = np.array([-0.02, -0.01, 0.005]) guidCmdData.omega_RN_B = omega_RN_B domega_RN_B = np.array([0.0002, 0.0003, 0.0001]) guidCmdData.domega_RN_B = domega_RN_B guidInMsg = messaging.AttGuidMsg().write(guidCmdData) # Setup logging on the test module output message so that we get all the writes to it dataLog = module.rateCmdOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # connect messages module.guidInMsg.subscribeTo(guidInMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Step the simulation to 3*process rate so 4 total steps including zero unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() # Compute truth states omegaAstTrue, omegaAstPTrue = findTrueValues(guidCmdData, module) # compare the module results to the truth values accuracy = 1e-12 for i in range(0, len(omegaAstTrue)): # check a vector values if not unitTestSupport.isArrayEqual(dataLog.omega_BastR_B[i], omegaAstTrue[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_BastR_B unit test at t=" + str(dataLog.times()[i] * macros.NANO2SEC) + "sec \n") # compare the module results to the truth values accuracy = 1e-12 for i in range(0, len(omegaAstPTrue)): # check a vector values if not unitTestSupport.isArrayEqual(dataLog.omegap_BastR_B[i], omegaAstPTrue[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed omegap_BastR_B unit test at t=" + str(dataLog.times()[i] * macros.NANO2SEC) + "sec \n") # If the argument provided at commandline "--show_plots" evaluates as true, # plot all figures if show_plots: plt.show() # print out success message if no error were found if testFailCount == 0: print("PASSED: " + module.ModelTag) # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def findTrueValues(guidCmdData, module): omegaMax = module.omega_max sigma = np.asarray(guidCmdData.sigma_BR) K1 = np.asarray(module.K1) K3 = np.asarray(module.K3) Bmat = RigidBodyKinematics.BmatMRP(sigma) omegaAst = [] #np.asarray([0, 0, 0]) omegaAst_P = [] for i in range(len(sigma)): steerRate = -1*(2*omegaMax/np.pi)*np.arctan((K1*sigma[i]+K3*sigma[i]*sigma[i]*sigma[i])*np.pi/(2*omegaMax)) omegaAst.append(steerRate) if 1: #module.ignoreOuterLoopFeedforward: #should be "if not" sigmaP = 0.25*Bmat.dot(omegaAst) for i in range(len(sigma)): omegaAstRate = (K1+3*K3*sigma[i]**2)/(1+((K1*sigma[i]+K3*sigma[i]**3)**2)*(np.pi/(2*omegaMax))**2)*sigmaP[i] omegaAst_P.append(-omegaAstRate) else: omegaAst_P = np.asarray([0, 0, 0]) omegaAst = [omegaAst, omegaAst, omegaAst] omegaAst_P = [omegaAst_P, omegaAst_P, omegaAst_P] return omegaAst, omegaAst_P if __name__ == "__main__": test_mrp_steering_tracking(False, 0.1, 1.0, 1.0)