Source code for scenario_AttGuidance

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#

r"""
Overview
--------

This script sets up a 6-DOF spacecraft orbiting Earth. The goal of the scenario is to
make use of the hill pointing module with
the :ref:`mrpFeedback` module and a reaction wheel pyramid
to control the attitude all within the new BSK_Sim architecture.

The script is found in the folder ``basilisk/examples/BskSim/scenarios`` and executed by using::

      python3 scenario_AttGuidance.py

The simulation mimics the basic simulation simulation in the earlier tutorial in
:ref:`scenarioAttitudeGuidance`.


The simulation layout is shown in the following illustration.

.. image:: /_images/static/test_scenario_AttGuidance.svg
   :align: center

The initial setup for the simulation closely models that of :ref:`scenario_FeedbackRW`.


Custom Dynamics Configurations Instructions
-------------------------------------------

The modules required for this scenario are identical to those used in :ref:`scenario_FeedbackRW`.


Custom FSW Configurations Instructions
--------------------------------------

Three of the four modules required to configure the :ref:`hillPoint` FSW mode have already been included
within the :ref:`BSK_FSW` framework
(``mrpFeedbackRWConfig()``, ``attTrackingErrorConfig()``, ``rwMotorTorqueConfig()``). The only remaining
module is the hill pointing module itself which is set within ``__init__()``.

These modules provide the initial setup for an attitude guidance system that makes use of an hill
pointing model, a module
that tracks the error of the spacecraft's MRP parameters against the vector pointing towards the central, planetary
body, and uses a module that takes that information to provide a torque to correct for the error.

This event is triggered when a user calls `self.masterSim.modeRequest = 'hillPoint'` in any
current or future :ref:`Folder_BskSim` file.

Illustration of Simulation Results
----------------------------------

::

    showPlots = True

.. image:: /_images/Scenarios/scenario_AttGuidance_attitudeErrorNorm.svg
   :align: center

.. image:: /_images/Scenarios/scenario_AttGuidance_rwMotorTorque.svg
   :align: center

.. image:: /_images/Scenarios/scenario_AttGuidance_rateError.svg
   :align: center

.. image:: /_images/Scenarios/scenario_AttGuidance_orientation.svg
   :align: center

"""



# Get current file path
import inspect
import os
import sys

import numpy as np
# Import utilities
from Basilisk.utilities import orbitalMotion, macros, vizSupport

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))

# Import master classes: simulation base class and scenario base class
sys.path.append(path + '/..')
from BSK_masters import BSKSim, BSKScenario
import BSK_Dynamics, BSK_Fsw

# Import plotting files for your scenario
sys.path.append(path + '/../plotting')
import BSK_Plotting as BSK_plt

# Create your own scenario child class
[docs]class scenario_HillPointing(BSKSim, BSKScenario): def __init__(self): super(scenario_HillPointing, self).__init__() self.name = 'scenario_AttGuidance' # declare additional class variables self.attNavRec = None self.transNavRec = None self.attErrRec = None self.attRefRec = None self.LrRec = None self.set_DynModel(BSK_Dynamics) self.set_FswModel(BSK_Fsw) self.configure_initial_conditions() self.log_outputs() # if this scenario is to interface with the BSK Viz, uncomment the following line DynModels = self.get_DynModel() vizSupport.enableUnityVisualization(self, DynModels.taskName, DynModels.scObject # , saveFile=__file__ , rwEffectorList=DynModels.rwStateEffector )
[docs] def configure_initial_conditions(self): # Configure Dynamics initial conditions oe = orbitalMotion.ClassicElements() oe.a = 10000000.0 # meters oe.e = 0.1 oe.i = 33.3 * macros.D2R oe.Omega = 48.2 * macros.D2R oe.omega = 347.8 * macros.D2R oe.f = 85.3 * macros.D2R DynModels = self.get_DynModel() mu = DynModels.gravFactory.gravBodies['earth'].mu rN, vN = orbitalMotion.elem2rv(mu, oe) orbitalMotion.rv2elem(mu, rN, vN) DynModels.scObject.hub.r_CN_NInit = rN # m - r_CN_N DynModels.scObject.hub.v_CN_NInit = vN # m/s - v_CN_N DynModels.scObject.hub.sigma_BNInit = [[0.1], [0.2], [-0.3]] # sigma_BN_B DynModels.scObject.hub.omega_BN_BInit = [[0.001], [-0.01], [0.03]] # rad/s - omega_BN_B
[docs] def log_outputs(self): FswModel = self.get_FswModel() DynModel = self.get_DynModel() samplingTime = FswModel.processTasksTimeStep # Dynamics process outputs self.attNavRec = DynModel.simpleNavObject.attOutMsg.recorder(samplingTime) self.transNavRec = DynModel.simpleNavObject.transOutMsg.recorder(samplingTime) # FSW process outputs self.attRefRec = FswModel.attRefMsg.recorder(samplingTime) self.attErrRec = FswModel.attGuidMsg.recorder(samplingTime) self.LrRec = FswModel.cmdTorqueMsg.recorder(samplingTime) self.AddModelToTask(DynModel.taskName, self.attNavRec) self.AddModelToTask(DynModel.taskName, self.transNavRec) self.AddModelToTask(DynModel.taskName, self.attRefRec) self.AddModelToTask(DynModel.taskName, self.attErrRec) self.AddModelToTask(DynModel.taskName, self.LrRec)
[docs] def pull_outputs(self, showPlots): # Dynamics process outputs sigma_BN = np.delete(self.attNavRec.sigma_BN, 0, 0) r_BN_N = np.delete(self.transNavRec.r_BN_N, 0, 0) v_BN_N = np.delete(self.transNavRec.v_BN_N, 0, 0) # FSW process outputs sigma_RN = np.delete(self.attRefRec.sigma_RN, 0, 0) omega_RN_N = np.delete(self.attRefRec.omega_RN_N, 0, 0) sigma_BR = np.delete(self.attErrRec.sigma_BR, 0, 0) omega_BR_B = np.delete(self.attErrRec.omega_BR_B, 0, 0) Lr = np.delete(self.LrRec.torqueRequestBody, 0, 0) # Plot results BSK_plt.clear_all_plots() timeLineSet = np.delete(self.attNavRec.times(), 0, 0) * macros.NANO2MIN BSK_plt.plot_attitude_error(timeLineSet, sigma_BR) BSK_plt.plot_control_torque(timeLineSet, Lr) BSK_plt.plot_rate_error(timeLineSet, omega_BR_B) BSK_plt.plot_orientation(timeLineSet, r_BN_N, v_BN_N, sigma_BN) BSK_plt.plot_attitudeGuidance(timeLineSet, sigma_RN, omega_RN_N) figureList = {} if showPlots: BSK_plt.show_all_plots() else: fileName = os.path.basename(os.path.splitext(__file__)[0]) figureNames = ["attitudeErrorNorm", "rwMotorTorque", "rateError", "orientation", "attitudeGuidance"] figureList = BSK_plt.save_all_plots(fileName, figureNames) return figureList
def runScenario(TheScenario): # Initialize simulation TheScenario.InitializeSimulation() # Configure FSW mode TheScenario.modeRequest = 'hillPoint' # Configure run time and execute simulation simulationTime = macros.min2nano(10.) TheScenario.ConfigureStopTime(simulationTime) TheScenario.ExecuteSimulation()
[docs]def run(showPlots): """ The scenarios can be run with the followings setups parameters: Args: showPlots (bool): Determines if the script should display plots """ # Instantiate base simulation scenario = scenario_HillPointing() runScenario(scenario) figureList = scenario.pull_outputs(showPlots) return figureList
if __name__ == "__main__": run(True)