Source code for scenarioSmallBodyNav

#
#  ISC License
#
#  Copyright (c) 2021, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#

r"""
Overview
--------

This scenario demonstrates how to use the ``smallBodyNavEKF()`` for state estimation about a small body. In this example,
Bennu is used. However, any small body could be selected as long as the appropriate gravitational parameter is set.

In this scenario, :ref:`simpleNav` and :ref:`planetEphemeris` provide measurements to the EKF in the form of :ref:`navTransMsgPayload`,
:ref:`navAttMsgPayload`, and :ref:`ephemerisMsgPayload` input messages. The EKF takes in these measurements at each timestep
and updates the state estimate, outputting this state estimate in its own standalone message, a :ref:`smallBodyNavMsgPayload`,
as well as navigation output messages - :ref:`navTransMsgPayload` and :ref:`ephemerisMsgPayload`.

.. note:: This module is only meant to provide a somewhat representative autonomous small body proximity operations navigation solution for POMDP solvers. Therefore, realistic measurement modules do not exist to support this module, and not every source of uncertainty in the problem is an estimated parameter.

.. attention::

    To see the asteroid Bennu in Vizard the asteroid asset bundle must be installed.  See
    the Vizard `Download <http://hanspeterschaub.info/basilisk/Vizard/VizardDownload.html>`__ web page.

The relative position estimate and the estimation error and covariance may be found in the plots below.

.. image:: /_images/Scenarios/scenarioSmallBodyNav1.svg
   :align: center

.. image:: /_images/Scenarios/scenarioSmallBodyNav3.svg
   :align: center

Likewise, the relative velocity estimate and the estimation error and covariance may be found in the plots below.

.. image:: /_images/Scenarios/scenarioSmallBodyNav2.svg
   :align: center

.. image:: /_images/Scenarios/scenarioSmallBodyNav4.svg
   :align: center

In the next four plots, the attitude and rate estimates and error plots of the small body frame with respect to the
 inertial frame are displayed.

.. image:: /_images/Scenarios/scenarioSmallBodyNav5.svg
   :align: center

.. image:: /_images/Scenarios/scenarioSmallBodyNav6.svg
   :align: center

.. image:: /_images/Scenarios/scenarioSmallBodyNav7.svg
   :align: center

.. image:: /_images/Scenarios/scenarioSmallBodyNav8.svg
   :align: center

The script is found in the folder ``basilisk/examples`` and executed by using::

      python3 scenarioSmallBodyNav.py


"""

#
# Basilisk Scenario Script and Integrated Test
#
# Purpose:  Example simulation to demonstrate the use of the smallBodyNavEKF
# Author:   Adam Herrmann
# Creation Date:  July 14th, 2021
#

import math
import os

import matplotlib.pyplot as plt
import numpy as np
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import attTrackingError
from Basilisk.fswAlgorithms import hillPoint
from Basilisk.fswAlgorithms import mrpFeedback
from Basilisk.fswAlgorithms import rwMotorTorque
from Basilisk.fswAlgorithms import smallBodyNavEKF
from Basilisk.fswAlgorithms import smallBodyWaypointFeedback
from Basilisk.simulation import ephemerisConverter
from Basilisk.simulation import planetEphemeris
from Basilisk.simulation import planetNav
from Basilisk.simulation import extForceTorque
from Basilisk.simulation import radiationPressure
from Basilisk.simulation import reactionWheelStateEffector
from Basilisk.simulation import simpleNav
from Basilisk.simulation import spacecraft
from Basilisk.utilities import (SimulationBaseClass, macros, simIncludeGravBody, vizSupport)
from Basilisk.utilities import orbitalMotion
from Basilisk.utilities import simIncludeRW
from Basilisk.utilities import unitTestSupport


# The path to the location of Basilisk
# Used to get the location of supporting data.
fileName = os.path.basename(os.path.splitext(__file__)[0])


# Plotting functions
[docs]def plot_position(time, meas_time, r_BO_O_truth, r_BO_O_est, r_BO_O_meas): """Plot the relative position result.""" #plt.gcf() fig, ax = plt.subplots(3, sharex=True, figsize=(12,6)) fig.add_subplot(111, frameon=False) plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) ax[0].plot(meas_time, r_BO_O_meas[:, 0], 'k*', label='measurement', markersize=1) ax[1].plot(meas_time, r_BO_O_meas[:, 1], 'k*', markersize=1) ax[2].plot(meas_time, r_BO_O_meas[:, 2], 'k*', markersize=1) ax[0].plot(time, r_BO_O_truth[:, 0], label=r'${}^Or_{BO_{1}}$') ax[1].plot(time, r_BO_O_truth[:, 1], label=r'${}^Or_{BO_{2}}$') ax[2].plot(time, r_BO_O_truth[:, 2], label=r'${}^Or_{BO_{3}}$') ax[0].plot(time, r_BO_O_est[:, 0], label='estimate') ax[1].plot(time, r_BO_O_est[:, 1]) ax[2].plot(time, r_BO_O_est[:, 2]) plt.xlabel('Time [sec]') plt.title('Relative Spacecraft Position') ax[0].set_ylabel(r'${}^O r_{BO_{1}}$ [m]') ax[1].set_ylabel(r'${}^O r_{BO_{2}}$ [m]') ax[2].set_ylabel(r'${}^O r_{BO_{3}}$ [m]') ax[0].legend() return
[docs]def plot_velocity(time, meas_time, v_BO_O_truth, v_BO_O_est, v_BO_O_meas): """Plot the relative velocity result.""" plt.gcf() fig, ax = plt.subplots(3, sharex=True, figsize=(12,6)) fig.add_subplot(111, frameon=False) plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) ax[0].plot(meas_time, v_BO_O_meas[:, 0], 'k*', label='measurement', markersize=1) ax[1].plot(meas_time, v_BO_O_meas[:, 1], 'k*', markersize=1) ax[2].plot(meas_time, v_BO_O_meas[:, 2], 'k*', markersize=1) ax[0].plot(time, v_BO_O_truth[:, 0], label='truth') ax[1].plot(time, v_BO_O_truth[:, 1]) ax[2].plot(time, v_BO_O_truth[:, 2]) ax[0].plot(time, v_BO_O_est[:, 0], label='estimate') ax[1].plot(time, v_BO_O_est[:, 1]) ax[2].plot(time, v_BO_O_est[:, 2]) plt.xlabel('Time [sec]') plt.title('Relative Spacecraft Velocity') ax[0].set_ylabel(r'${}^Ov_{BO_1}$ [m/s]') ax[1].set_ylabel(r'${}^Ov_{BO_2}$ [m/s]') ax[2].set_ylabel(r'${}^Ov_{BO_3}$ [m/s]') ax[0].legend() return
[docs]def plot_pos_error(time, r_err, P): """Plot the position estimation error and associated covariance.""" # plt.figure(3) plt.gcf() fig, ax = plt.subplots(3, sharex=True, figsize=(12,6)) fig.add_subplot(111, frameon=False) plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) ax[0].plot(time, r_err[:, 0], label='error') ax[0].plot(time, 2*np.sqrt(P[:, 0, 0]), 'k--', label=r'$2\sigma$') ax[0].plot(time, -2*np.sqrt(P[:, 0, 0]), 'k--') ax[1].plot(time, r_err[:, 1]) ax[1].plot(time, 2*np.sqrt(P[:, 1, 1]), 'k--') ax[1].plot(time, -2*np.sqrt(P[:, 1, 1]), 'k--') ax[2].plot(time, r_err[:, 2]) ax[2].plot(time, 2*np.sqrt(P[:, 2, 2]), 'k--') ax[2].plot(time, -2*np.sqrt(P[:, 2, 2]), 'k--') plt.xlabel('Time [sec]') plt.title('Position Error and Covariance') ax[0].set_ylabel(r'${}^Or_{BO_1}$ Error [m]') ax[1].set_ylabel(r'${}^Or_{BO_2}$ Error [m]') ax[2].set_ylabel(r'${}^Or_{BO_3}$ Error [m]') ax[0].legend() return
[docs]def plot_vel_error(time, v_err, P): """Plot the position estimation error and associated covariance.""" # plt.figure(4) plt.gcf() fig, ax = plt.subplots(3, sharex=True, sharey=True, figsize=(12,6)) fig.add_subplot(111, frameon=False) plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) ax[0].plot(time, v_err[:, 0], label='error') ax[0].plot(time, 2*np.sqrt(P[:, 3, 3]), 'k--', label=r'$2\sigma$') ax[0].plot(time, -2*np.sqrt(P[:, 3, 3]), 'k--') ax[1].plot(time, v_err[:, 1]) ax[1].plot(time, 2*np.sqrt(P[:, 4, 4]), 'k--') ax[1].plot(time, -2*np.sqrt(P[:, 4, 4]), 'k--') ax[2].plot(time, v_err[:, 2]) ax[2].plot(time, 2*np.sqrt(P[:, 5, 5]), 'k--') ax[2].plot(time, -2*np.sqrt(P[:, 5, 5]), 'k--') plt.xlabel('Time [sec]') plt.title('Velocity Error and Covariance') ax[0].set_ylabel('${}^Ov_{BO_1}$ Error [m/s]') ax[1].set_ylabel('${}^Ov_{BO_2}$ Error [m/s]') ax[2].set_ylabel('${}^Ov_{BO_3}$ Error [m/s]') ax[0].legend() return
def plot_sc_att(time, meas_time, sigma_BN_truth, sigma_BN_est, sigma_BN_meas): plt.gcf() fig, ax = plt.subplots(3, sharex=True, sharey=True, figsize=(12,6)) fig.add_subplot(111, frameon=False) plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) ax[0].plot(meas_time, sigma_BN_meas[:, 0], 'k*', label='measurement', markersize=1) ax[1].plot(meas_time, sigma_BN_meas[:, 1], 'k*', markersize=1) ax[2].plot(meas_time, sigma_BN_meas[:, 2], 'k*', markersize=1) ax[0].plot(time, sigma_BN_truth[:, 0], label='truth') ax[1].plot(time, sigma_BN_truth[:, 1]) ax[2].plot(time, sigma_BN_truth[:, 2]) ax[0].plot(time, sigma_BN_est[:, 0], label='estimate') ax[1].plot(time, sigma_BN_est[:, 1]) ax[2].plot(time, sigma_BN_est[:, 2]) plt.xlabel('Time [sec]') ax[0].set_ylabel(r'$\sigma_{BN_1}$ [rad]') ax[1].set_ylabel(r'$\sigma_{BN_2}$ [rad]') ax[2].set_ylabel(r'$\sigma_{BN_3}$ [rad]') ax[0].legend() return def plot_sc_rate(time, meas_time, omega_BN_B_truth, omega_BN_B_est, omega_BN_B_meas): plt.gcf() fig, ax = plt.subplots(3, sharex=True, sharey=True, figsize=(12,6)) fig.add_subplot(111, frameon=False) plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) ax[0].plot(meas_time, omega_BN_B_meas[:, 0], 'k*', label='measurement', markersize=1) ax[1].plot(meas_time, omega_BN_B_meas[:, 1], 'k*', markersize=1) ax[2].plot(meas_time, omega_BN_B_meas[:, 2], 'k*', markersize=1) ax[0].plot(time, omega_BN_B_truth[:, 0], label='truth') ax[1].plot(time, omega_BN_B_truth[:, 1]) ax[2].plot(time, omega_BN_B_truth[:, 2]) ax[0].plot(time, omega_BN_B_est[:, 0], label='estimate') ax[1].plot(time, omega_BN_B_est[:, 1]) ax[2].plot(time, omega_BN_B_est[:, 2]) plt.xlabel('Time [sec]') ax[0].set_ylabel(r'${}^B\omega_{BN_{1}}$ [rad/s]') ax[1].set_ylabel(r'${}^B\omega_{BN_{2}}$ [rad/s]') ax[2].set_ylabel(r'${}^B\omega_{BN_{3}}$ [rad/s]') ax[0].legend() return def plot_ast_att(time, meas_time, sigma_AN_truth, sigma_AN_est, sigma_AN_meas): plt.gcf() fig, ax = plt.subplots(3, sharex=True, sharey=True, figsize=(12,6)) fig.add_subplot(111, frameon=False) plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) ax[0].plot(meas_time, sigma_AN_meas[:, 0], 'k*', label='measurement', markersize=1) ax[1].plot(meas_time, sigma_AN_meas[:, 1], 'k*', markersize=1) ax[2].plot(meas_time, sigma_AN_meas[:, 2], 'k*', markersize=1) ax[0].plot(time, sigma_AN_truth[:, 0], label='truth') ax[1].plot(time, sigma_AN_truth[:, 1]) ax[2].plot(time, sigma_AN_truth[:, 2]) ax[0].plot(time, sigma_AN_est[:, 0], label='estimate') ax[1].plot(time, sigma_AN_est[:, 1]) ax[2].plot(time, sigma_AN_est[:, 2]) plt.xlabel('Time [sec]') ax[0].set_ylabel(r'$\sigma_{AN_{1}}$ [rad]') ax[1].set_ylabel(r'$\sigma_{AN_{2}}$ [rad]') ax[2].set_ylabel(r'$\sigma_{AN_{3}}$ [rad]') ax[0].legend() return def plot_ast_rate(time, meas_time, omega_AN_A_truth, omega_AN_A_est, omega_AN_A_meas): plt.gcf() fig, ax = plt.subplots(3, sharex=True, figsize=(12,6)) fig.add_subplot(111, frameon=False) plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) ax[0].plot(meas_time, omega_AN_A_meas[:, 0], 'k*', label='measurement', markersize=1) ax[1].plot(meas_time, omega_AN_A_meas[:, 1], 'k*', markersize=1) ax[2].plot(meas_time, omega_AN_A_meas[:, 2], 'k*', markersize=1) ax[0].plot(time, omega_AN_A_truth[:, 0], label='truth') ax[1].plot(time, omega_AN_A_truth[:, 1]) ax[2].plot(time, omega_AN_A_truth[:, 2]) ax[0].plot(time, omega_AN_A_est[:, 0], label='estimate') ax[1].plot(time, omega_AN_A_est[:, 1]) ax[2].plot(time, omega_AN_A_est[:, 2]) ax[0].set_ylabel(r'${}^A\omega_{AN_{1}}$ [rad/s]') ax[1].set_ylabel(r'${}^A\omega_{AN_{2}}$ [rad/s]') ax[2].set_ylabel(r'${}^A\omega_{AN_{3}}$ [rad/s]') plt.xlabel('Time [sec]') ax[0].legend() return
[docs]def plot_ast_attitude_error(time, sigma_err, P): """Plot the asteroid attitude estimation error and associated covariance.""" plt.gcf() fig, ax = plt.subplots(3, sharex=True, figsize=(12,6)) fig.add_subplot(111, frameon=False) plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) ax[0].plot(time, sigma_err[:, 0], label='error') ax[0].plot(time, 2*np.sqrt(P[:, 6, 6]), 'k--', label=r'$2\sigma$') ax[0].plot(time, -2*np.sqrt(P[:, 6, 6]), 'k--') ax[1].plot(time, sigma_err[:, 1]) ax[1].plot(time, 2*np.sqrt(P[:, 7, 7]), 'k--') ax[1].plot(time, -2*np.sqrt(P[:, 7, 7]), 'k--') ax[2].plot(time, sigma_err[:, 2]) ax[2].plot(time, 2*np.sqrt(P[:, 8, 8]), 'k--') ax[2].plot(time, -2*np.sqrt(P[:, 8, 8]), 'k--') plt.xlabel('Time [sec]') plt.title('Attitude Error and Covariance') ax[0].set_ylabel(r'$\sigma_{AN_{1}}$ Error [rad]') ax[1].set_ylabel(r'$\sigma_{AN_{2}}$ Error [rad]') ax[2].set_ylabel(r'$\sigma_{AN_{3}}$ Error [rad]') ax[0].legend() return
[docs]def plot_ast_rate_error(time, omega_err, P): """Plot the asteroid rate estimation error and associated covariance.""" plt.gcf() fig, ax = plt.subplots(3, sharex=True, figsize=(12,6)) fig.add_subplot(111, frameon=False) plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) ax[0].plot(time, omega_err[:, 0], label='error') ax[0].plot(time, 2*np.sqrt(P[:, 9, 9]), 'k--', label=r'$2\sigma$') ax[0].plot(time, -2*np.sqrt(P[:, 9, 9]), 'k--') ax[1].plot(time, omega_err[:, 1]) ax[1].plot(time, 2*np.sqrt(P[:, 10, 10]), 'k--') ax[1].plot(time, -2*np.sqrt(P[:, 10, 10]), 'k--') ax[2].plot(time, omega_err[:, 2]) ax[2].plot(time, 2*np.sqrt(P[:, 11, 11]), 'k--') ax[2].plot(time, -2*np.sqrt(P[:, 11, 11]), 'k--') plt.xlabel('Time [sec]') plt.title('Position Error and Covariance') ax[0].set_ylabel(r'${}^A\omega_{AN_{1}}$ Error [rad/s]') ax[1].set_ylabel(r'${}^A\omega_{AN_{2}}$ Error [rad/s]') ax[2].set_ylabel(r'${}^A\omega_{AN_{3}}$ Error [rad/s]') ax[0].legend() return
[docs]def run(show_plots): """ The scenarios can be run with the followings setups parameters: Args: show_plots (bool): Determines if the script should display plots """ path = os.path.dirname(os.path.abspath(__file__)) # Create simulation variable names simTaskName = "simTask" measTaskName = "measTask" fswTaskName = "fswTask" simProcessName = "simProcess" # Create a sim module as an empty container scSim = SimulationBaseClass.SimBaseClass() # # create the simulation process # dynProcess = scSim.CreateNewProcess(simProcessName) # create the dynamics task and specify the simulation time step information simulationTimeStep = macros.sec2nano(1.0) dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep)) dynProcess.addTask(scSim.CreateNewTask(measTaskName, simulationTimeStep)) dynProcess.addTask(scSim.CreateNewTask(fswTaskName, simulationTimeStep)) # setup celestial object ephemeris module gravBodyEphem = planetEphemeris.PlanetEphemeris() gravBodyEphem.ModelTag = 'planetEphemeris' gravBodyEphem.setPlanetNames(planetEphemeris.StringVector(["bennu"])) # specify orbits of gravitational bodies # https://ssd.jpl.nasa.gov/horizons.cgi#results # December 31st, 2018 oeAsteroid = planetEphemeris.ClassicElementsMsgPayload() oeAsteroid.a = 1.1259 * orbitalMotion.AU * 1000 # meters oeAsteroid.e = 0.20373 oeAsteroid.i = 6.0343 * macros.D2R oeAsteroid.Omega = 2.01820 * macros.D2R oeAsteroid.omega = 66.304 * macros.D2R oeAsteroid.f = 346.32 * macros.D2R r_ON_N, v_ON_N = orbitalMotion.elem2rv(orbitalMotion.MU_SUN*(1000.**3), oeAsteroid) # specify celestial object orbit gravBodyEphem.planetElements = planetEphemeris.classicElementVector([oeAsteroid]) # specify celestial object orientation gravBodyEphem.rightAscension = planetEphemeris.DoubleVector([86.6388 * macros.D2R]) gravBodyEphem.declination = planetEphemeris.DoubleVector([-65.1086 * macros.D2R]) gravBodyEphem.lst0 = planetEphemeris.DoubleVector([0.0 * macros.D2R]) gravBodyEphem.rotRate = planetEphemeris.DoubleVector([360 * macros.D2R / (4.297461 * 3600.)]) # setup Sun Gravity Body gravFactory = simIncludeGravBody.gravBodyFactory() gravFactory.createSun() # Create a sun spice message, zero it out, required by srp sunPlanetStateMsgData = messaging.SpicePlanetStateMsgPayload() sunPlanetStateMsg = messaging.SpicePlanetStateMsg() sunPlanetStateMsg.write(sunPlanetStateMsgData) # Create a sun ephemeris message, zero it out, required by nav filter sunEphemerisMsgData = messaging.EphemerisMsgPayload() sunEphemerisMsg = messaging.EphemerisMsg() sunEphemerisMsg.write(sunEphemerisMsgData) mu = 4.892 # m^3/s^2 asteroid = gravFactory.createCustomGravObject("bennu", mu , modelDictionaryKey="Bennu" , radEquator=565. / 2.0 ) asteroid.planetBodyInMsg.subscribeTo(gravBodyEphem.planetOutMsgs[0]) # create SC object scObject = spacecraft.Spacecraft() scObject.ModelTag = "bskSat" gravFactory.addBodiesTo(scObject) # Create the position and velocity of states of the s/c wrt the small body hill frame r_BO_N = np.array([2000., 1500., 1000.]) # Position of the spacecraft relative to the body v_BO_N = np.array([1., 1., 1.]) # Velocity of the spacecraft relative to the body # Create the inertial position and velocity of the s/c r_BN_N = np.add(r_BO_N, r_ON_N) v_BN_N = np.add(v_BO_N, v_ON_N) # Set the truth ICs for the spacecraft position and velocity scObject.hub.r_CN_NInit = r_BN_N # m - r_BN_N scObject.hub.v_CN_NInit = v_BN_N # m/s - v_BN_N I = [82.12, 0.0, 0.0, 0.0, 98.40, 0.0, 0.0, 0.0, 121.0] mass = 330. # kg scObject.hub.mHub = mass scObject.hub.IHubPntBc_B = unitTestSupport.np2EigenMatrix3d(I) # Set the truth ICs for the spacecraft attitude and rate scObject.hub.sigma_BNInit = np.array([0.1, 0.0, 0.0]) # rad scObject.hub.omega_BN_BInit = np.array([0.1, 0.1, 0.1]) # rad/s # Create RWs rwFactory = simIncludeRW.rwFactory() # create each RW by specifying the RW type, the spin axis gsHat, plus optional arguments RW1 = rwFactory.create('Honeywell_HR16', [1, 0, 0], maxMomentum=50., Omega=100. # RPM ) RW2 = rwFactory.create('Honeywell_HR16', [0, 1, 0], maxMomentum=50., Omega=200. # RPM ) RW3 = rwFactory.create('Honeywell_HR16', [0, 0, 1], maxMomentum=50., Omega=300. # RPM ) # create RW object container and tie to spacecraft object rwStateEffector = reactionWheelStateEffector.ReactionWheelStateEffector() rwStateEffector.ModelTag = "RW_cluster" rwFactory.addToSpacecraft(scObject.ModelTag, rwStateEffector, scObject) rwConfigMsg = rwFactory.getConfigMessage() # Create a zero'd out thruster message thrusterMsgData = messaging.THROutputMsgPayload() thrusterMsg = messaging.THROutputMsg() thrusterMsg.write(thrusterMsgData) # Create an SRP model srp = radiationPressure.RadiationPressure() # default model is the SRP_CANNONBALL_MODEL srp.area = 3. # m^3 srp.coefficientReflection = 0.9 scObject.addDynamicEffector(srp) srp.sunEphmInMsg.subscribeTo(sunPlanetStateMsg) # Create an ephemeris converter ephemConverter = ephemerisConverter.EphemerisConverter() ephemConverter.ModelTag = "ephemConverter" ephemConverter.addSpiceInputMsg(gravBodyEphem.planetOutMsgs[0]) # Set up simpleNav for s/c "measurements" simpleNavMeas = simpleNav.SimpleNav() simpleNavMeas.ModelTag = 'SimpleNav' simpleNavMeas.scStateInMsg.subscribeTo(scObject.scStateOutMsg) pos_sigma_sc = 40.0 vel_sigma_sc = 0.05 att_sigma_sc = 0. * math.pi / 180.0 rate_sigma_sc = 0. * math.pi / 180.0 sun_sigma_sc = 0.0 dv_sigma_sc = 0.0 p_matrix_sc = [[pos_sigma_sc, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., pos_sigma_sc, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., pos_sigma_sc, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., vel_sigma_sc, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., vel_sigma_sc, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., vel_sigma_sc, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., att_sigma_sc, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., att_sigma_sc, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., att_sigma_sc, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., rate_sigma_sc, 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., rate_sigma_sc, 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., rate_sigma_sc, 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., sun_sigma_sc, 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., sun_sigma_sc, 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., sun_sigma_sc, 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., dv_sigma_sc, 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., dv_sigma_sc, 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., dv_sigma_sc]] walk_bounds_sc = [[10.], [10.], [10.], [0.01], [0.01], [0.01], [0.005], [0.005], [0.005], [0.002], [0.002], [0.002], [0.], [0.], [0.], [0.], [0.], [0.]] simpleNavMeas.PMatrix = p_matrix_sc simpleNavMeas.walkBounds = walk_bounds_sc simpleNavMeas2 = simpleNav.SimpleNav() simpleNavMeas2.ModelTag = 'SimpleNav2' simpleNavMeas2.scStateInMsg.subscribeTo(scObject.scStateOutMsg) simpleNavMeas2.PMatrix = p_matrix_sc simpleNavMeas2.walkBounds = walk_bounds_sc # Set up planetNav for Bennu "measurements" planetNavMeas = planetNav.PlanetNav() planetNavMeas.ephemerisInMsg.subscribeTo(ephemConverter.ephemOutMsgs[0]) # Define the Pmatrix for planetNav, no uncertainty on position and velocity of the body pos_sigma_p = 0.0 vel_sigma_p = 0.0 att_sigma_p = 1.0 * math.pi / 180.0 rate_sigma_p = 0.1 * math.pi / 180.0 p_matrix_p = [[pos_sigma_p, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., pos_sigma_p, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., pos_sigma_p, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., vel_sigma_p, 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., vel_sigma_p, 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., vel_sigma_p, 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., att_sigma_p, 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., att_sigma_p, 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., att_sigma_p, 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., rate_sigma_p, 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., rate_sigma_p, 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., rate_sigma_p]] walk_bounds_p = [[0.], [0.], [0.], [0.], [0.], [0.], [0.005], [0.005], [0.005], [0.002], [0.002], [0.002]] planetNavMeas.PMatrix = p_matrix_p planetNavMeas.walkBounds = walk_bounds_p # Sun pointing configuration sunPoint = hillPoint.hillPoint() sunPoint.ModelTag = "sunPoint" sunPoint.celBodyInMsg.subscribeTo(ephemConverter.ephemOutMsgs[0]) # Attitude error configuration trackingError = attTrackingError.attTrackingError() trackingError.ModelTag = "trackingError" trackingError.attRefInMsg.subscribeTo(sunPoint.attRefOutMsg) # Specify the vehicle configuration message to tell things what the vehicle inertia is vehicleConfigOut = messaging.VehicleConfigMsgPayload() vehicleConfigOut.ISCPntB_B = I vcConfigMsg = messaging.VehicleConfigMsg().write(vehicleConfigOut) # Attitude controller configuration mrpFeedbackControl = mrpFeedback.mrpFeedback() mrpFeedbackControl.ModelTag = "mrpFeedbackControl" mrpFeedbackControl.guidInMsg.subscribeTo(trackingError.attGuidOutMsg) mrpFeedbackControl.vehConfigInMsg.subscribeTo(vcConfigMsg) mrpFeedbackControl.K = 7. mrpFeedbackControl.Ki = -1.0 mrpFeedbackControl.P = 35. mrpFeedbackControl.integralLimit = 2. / mrpFeedbackControl.Ki * 0.1 # add module that maps the Lr control torque into the RW motor torques rwMotorTorqueObj = rwMotorTorque.rwMotorTorque() rwMotorTorqueObj.ModelTag = "rwMotorTorque" rwStateEffector.rwMotorCmdInMsg.subscribeTo(rwMotorTorqueObj.rwMotorTorqueOutMsg) rwMotorTorqueObj.rwParamsInMsg.subscribeTo(rwConfigMsg) rwMotorTorqueObj.vehControlInMsg.subscribeTo(mrpFeedbackControl.cmdTorqueOutMsg) rwMotorTorqueObj.controlAxes_B = [1, 0, 0, 0, 1, 0, 0, 0, 1] rwStateEffector.rwMotorCmdInMsg.subscribeTo(rwMotorTorqueObj.rwMotorTorqueOutMsg) # Create the Lyapunov feedback controller waypointFeedback = smallBodyWaypointFeedback.SmallBodyWaypointFeedback() waypointFeedback.asteroidEphemerisInMsg.subscribeTo(planetNavMeas.ephemerisOutMsg) waypointFeedback.sunEphemerisInMsg.subscribeTo(sunEphemerisMsg) waypointFeedback.navAttInMsg.subscribeTo(simpleNavMeas2.attOutMsg) waypointFeedback.A_sc = 1. # Surface area of the spacecraft, m^2 waypointFeedback.M_sc = mass # Mass of the spacecraft, kg waypointFeedback.IHubPntC_B = unitTestSupport.np2EigenMatrix3d(I) # sc inertia waypointFeedback.mu_ast = mu # Gravitational constant of the asteroid waypointFeedback.x1_ref = [-2000., 0., 0.] waypointFeedback.x2_ref = [0.0, 0.0, 0.0] extForceTorqueModule = extForceTorque.ExtForceTorque() extForceTorqueModule.cmdForceBodyInMsg.subscribeTo(waypointFeedback.forceOutMsg) scObject.addDynamicEffector(extForceTorqueModule) # Set up the small body EKF smallBodyNav = smallBodyNavEKF.SmallBodyNavEKF() smallBodyNav.ModelTag = "smallBodyNavEKF" # Set the filter parameters (sc area, mass, gravitational constants, etc.) smallBodyNav.A_sc = 1. # Surface area of the spacecraft, m^2 smallBodyNav.M_sc = mass # Mass of the spacecraft, kg smallBodyNav.mu_ast = mu # Gravitational constant of the asteroid # Set the process noise Q = np.zeros((12,12)) Q[0,0] = Q[1,1] = Q[2,2] = 0.0000001 Q[3,3] = Q[4,4] = Q[5,5] = 0.000001 Q[6,6] = Q[7,7] = Q[8,8] = 0.000001 Q[9,9] = Q[10,10] = Q[11,11] = 0.0000001 smallBodyNav.Q = Q.tolist() # Set the measurement noise R = np.zeros((12,12)) R[0,0] = R[1,1] = R[2,2] = pos_sigma_sc # position sigmas R[3,3] = R[4,4] = R[5,5] = vel_sigma_sc # velocity sigmas R[6,6] = R[7,7] = R[8,8] = att_sigma_p R[9,9] = R[10,10] = R[11,11] = rate_sigma_p smallBodyNav.R = np.multiply(R, R).tolist() # Measurement Noise # Set the initial guess, x_0 x_0 = np.zeros(18) x_0[0:3] = np.array([2458., -704.08, 844.275]) x_0[3:6] = np.array([1.475, -0.176, 0.894]) x_0[6:9] = np.array([-0.58, 0.615, 0.125]) x_0[11] = 0.0004 smallBodyNav.x_hat_k = x_0 # Set the covariance to something large smallBodyNav.P_k = (0.1*np.identity(12)).tolist() # Connect the relevant modules to the smallBodyEKF input messages smallBodyNav.navTransInMsg.subscribeTo(simpleNavMeas.transOutMsg) smallBodyNav.navAttInMsg.subscribeTo(simpleNavMeas2.attOutMsg) smallBodyNav.asteroidEphemerisInMsg.subscribeTo(planetNavMeas.ephemerisOutMsg) smallBodyNav.sunEphemerisInMsg.subscribeTo(sunEphemerisMsg) smallBodyNav.cmdForceBodyInMsg.subscribeTo(waypointFeedback.forceOutMsg) smallBodyNav.addThrusterToFilter(thrusterMsg) # Connect the smallBodyEKF output messages to the relevant modules trackingError.attNavInMsg.subscribeTo(simpleNavMeas2.attOutMsg) sunPoint.transNavInMsg.subscribeTo(simpleNavMeas2.transOutMsg) waypointFeedback.navTransInMsg.subscribeTo(smallBodyNav.navTransOutMsg) # Set the waypoint feedback gains waypointFeedback.K1 = unitTestSupport.np2EigenMatrix3d([5e-4, 0e-5, 0e-5, 0e-5, 5e-4, 0e-5, 0e-5, 0e-5, 5e-4]) waypointFeedback.K2 = unitTestSupport.np2EigenMatrix3d([1., 0., 0., 0., 1., 0., 0., 0., 1.]) # Add all models to the task scSim.AddModelToTask(simTaskName, scObject, 100) scSim.AddModelToTask(simTaskName, srp, 99) scSim.AddModelToTask(simTaskName, gravBodyEphem, 99) scSim.AddModelToTask(simTaskName, rwStateEffector, 91) scSim.AddModelToTask(simTaskName, extForceTorqueModule, 91) scSim.AddModelToTask(simTaskName, simpleNavMeas2, 90) scSim.AddModelToTask(simTaskName, ephemConverter, 98) scSim.AddModelToTask(measTaskName, simpleNavMeas, 97) scSim.AddModelToTask(measTaskName, planetNavMeas, 96) scSim.AddModelToTask(fswTaskName, smallBodyNav, 90) scSim.AddModelToTask(fswTaskName, waypointFeedback, 89) scSim.AddModelToTask(fswTaskName, sunPoint, 95) scSim.AddModelToTask(fswTaskName, trackingError, 94) scSim.AddModelToTask(fswTaskName, mrpFeedbackControl, 93) scSim.AddModelToTask(fswTaskName, rwMotorTorqueObj, 92) # Setup data logging before the simulation is initialized sc_truth_recorder = scObject.scStateOutMsg.recorder() ast_truth_recorder = gravBodyEphem.planetOutMsgs[0].recorder() ast_ephemeris_recorder = ephemConverter.ephemOutMsgs[0].recorder() ast_ephemeris_meas_recorder = planetNavMeas.ephemerisOutMsg.recorder() state_recorder = smallBodyNav.smallBodyNavOutMsg.recorder() sc_meas_recorder = simpleNavMeas.transOutMsg.recorder() sc_att_meas_recorder = simpleNavMeas.attOutMsg.recorder() scSim.AddModelToTask(simTaskName, sc_truth_recorder) scSim.AddModelToTask(simTaskName, ast_truth_recorder) scSim.AddModelToTask(fswTaskName, state_recorder) scSim.AddModelToTask(measTaskName, sc_meas_recorder) scSim.AddModelToTask(measTaskName, sc_att_meas_recorder) scSim.AddModelToTask(simTaskName, ast_ephemeris_recorder) scSim.AddModelToTask(measTaskName, ast_ephemeris_meas_recorder) if vizSupport.vizFound: viz = vizSupport.enableUnityVisualization(scSim, simTaskName, scObject # , saveFile=fileName ) viz.settings.showSpacecraftLabels = 1 # initialize Simulation scSim.InitializeSimulation() # configure a simulation stop time and execute the simulation run simulationTime = macros.sec2nano(1000.0) scSim.ConfigureStopTime(simulationTime) scSim.ExecuteSimulation() scSim.ConfigureStopTime(simulationTime + macros.sec2nano(1000.)) scSim.disableTask(measTaskName) scSim.ExecuteSimulation() scSim.ConfigureStopTime(simulationTime + macros.sec2nano(2000.)) scSim.enableTask(measTaskName) scSim.ExecuteSimulation() scSim.ConfigureStopTime(simulationTime + macros.sec2nano(3000.)) scSim.disableTask(measTaskName) scSim.ExecuteSimulation() scSim.ConfigureStopTime(simulationTime + macros.sec2nano(4000.)) scSim.enableTask(measTaskName) scSim.ExecuteSimulation() # retrieve logged spacecraft position relative to asteroid r_BN_N_truth = sc_truth_recorder.r_BN_N r_BN_N_meas = sc_meas_recorder.r_BN_N v_BN_N_truth = sc_truth_recorder.v_BN_N v_BN_N_meas = sc_meas_recorder.v_BN_N r_AN_N = ast_truth_recorder.PositionVector v_AN_N = ast_truth_recorder.VelocityVector sigma_AN_truth = ast_ephemeris_recorder.sigma_BN omega_AN_A_truth = ast_ephemeris_recorder.omega_BN_B sigma_AN_meas = ast_ephemeris_meas_recorder.sigma_BN omega_AN_A_meas = ast_ephemeris_meas_recorder.omega_BN_B x_hat = state_recorder.state P = state_recorder.covar time = sc_truth_recorder.times() * macros.NANO2SEC meas_time = sc_meas_recorder.times() * macros.NANO2SEC # Compute the relative position and velocity of the s/c in the small body hill frame r_BO_O_truth = [] v_BO_O_truth = [] r_BO_O_meas = [] v_BO_O_meas = [] for rd_N, vd_N, rc_N, vc_N in zip(r_BN_N_truth, v_BN_N_truth, r_AN_N, v_AN_N): dcm_ON = orbitalMotion.hillFrame(rc_N, vc_N) r_BO_O_truth.append(np.matmul(dcm_ON, rd_N-rc_N)) v_BO_O_truth.append(np.matmul(dcm_ON, vd_N-vc_N)) for idx, t in enumerate(meas_time): truth_idx = np.where(time == t)[0][0] rc_N = r_AN_N[truth_idx, :] vc_N = v_AN_N[truth_idx, :] rd_N_meas = r_BN_N_meas[idx, :] vd_N_meas = v_BN_N_meas[idx, :] dcm_ON = orbitalMotion.hillFrame(rc_N, vc_N) r_BO_O_meas.append(np.matmul(dcm_ON, rd_N_meas-rc_N)) v_BO_O_meas.append(np.matmul(dcm_ON, vd_N_meas-vc_N)) # # plot the results # plot_position(time, meas_time, np.array(r_BO_O_truth), x_hat[:,0:3], np.array(r_BO_O_meas)) figureList = {} pltName = fileName + "1" figureList[pltName] = plt.figure(1) plot_velocity(time, meas_time, np.array(v_BO_O_truth), x_hat[:,3:6], np.array(v_BO_O_meas)) pltName = fileName + "2" figureList[pltName] = plt.figure(2) plot_pos_error(time, np.subtract(r_BO_O_truth, x_hat[:,0:3]), P) pltName = fileName + "3" figureList[pltName] = plt.figure(3) plot_vel_error(time, np.subtract(v_BO_O_truth,x_hat[:,3:6]), P) pltName = fileName + "4" figureList[pltName] = plt.figure(4) plot_ast_att(time, meas_time, np.array(sigma_AN_truth), x_hat[:,6:9], np.array(sigma_AN_meas)) pltName = fileName + "5" figureList[pltName] = plt.figure(5) plot_ast_rate(time, meas_time, np.array(omega_AN_A_truth), x_hat[:,9:12], np.array(omega_AN_A_meas)) pltName = fileName + "6" figureList[pltName] = plt.figure(6) plot_ast_attitude_error(time, np.subtract(sigma_AN_truth, x_hat[:,6:9]), P) pltName = fileName + "7" figureList[pltName] = plt.figure(7) plot_ast_rate_error(time, np.subtract(omega_AN_A_truth, x_hat[:,9:12]), P) pltName = fileName + "8" figureList[pltName] = plt.figure(8) if show_plots: plt.show() # close the plots being saved off to avoid over-writing old and new figures plt.close("all") return figureList
# # This statement below ensures that the unit test scrip can be run as a # stand-along python script # if __name__ == "__main__": run( True # show_plots )