Source code for test_celestialTwoBodyPoint

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#

#   Unit Test Script
#   Module Name:        celestialTwoBodyPoint
#   Author:             Mar Cols
#   Creation Date:      May 11, 2016
#

import os, inspect
import numpy as np
from numpy import linalg as la
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions
from Basilisk.fswAlgorithms import celestialTwoBodyPoint  # module that is to be tested
from Basilisk.utilities import macros
from Basilisk.utilities import astroFunctions as af
from Basilisk.utilities import RigidBodyKinematics as rbk
from Basilisk.architecture import messaging


filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
textSnippetPassed = r'\textcolor{ForestGreen}{' + "PASSED" + '}'
textSnippetFailed = r'\textcolor{Red}{' + "Failed" + '}'


# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_

def computeCelestialTwoBodyPoint(R_P1, v_P1, a_P1, R_P2, v_P2, a_P2):

    # Beforehand computations
    R_n = np.cross(R_P1, R_P2)
    v_n = np.cross(v_P1, R_P2) + np.cross(R_P1, v_P2)
    a_n = np.cross(a_P1, R_P2) + np.cross(R_P1, a_P2) + 2 * np.cross(v_P1, v_P2)

    # Reference Frame generation
    r1_hat = R_P1/la.norm(R_P1)
    r3_hat = R_n/la.norm(R_n)
    r2_hat = np.cross(r3_hat, r1_hat)
    RN = np.array([r1_hat, r2_hat, r3_hat])
    sigma_RN = rbk.C2MRP(RN)

    # Reference base-vectors first time-derivative
    I_33 = np.identity(3)
    C1 = I_33 - np.outer(r1_hat, r1_hat)
    dr1_hat = 1.0 / la.norm(R_P1) * np.dot(C1, v_P1)
    C3 = I_33 - np.outer(r3_hat, r3_hat)
    dr3_hat = 1.0 / la.norm(R_n) * np.dot(C3, v_n)
    dr2_hat = np.cross(dr3_hat, r1_hat) + np.cross(r3_hat, dr1_hat)

    # Angular Velocity computation
    omega_RN_R = np.array([
        np.dot(r3_hat, dr2_hat),
        np.dot(r1_hat, dr3_hat),
        np.dot(r2_hat, dr1_hat)
    ])
    omega_RN_N = np.dot(RN.T, omega_RN_R)

    # Reference base-vectors second time-derivative
    temp33_1 = 2 * np.outer(dr1_hat, r1_hat) + np.outer(r1_hat, dr1_hat)
    ddr1_hat = 1.0 / la.norm(R_P1) * (np.dot(C1, a_P1) - np.dot(temp33_1, v_P1))
    temp33_3 = 2 * np.outer(dr3_hat, r3_hat) + np.outer(r3_hat, dr3_hat)
    ddr3_hat = 1.0 / la.norm(R_n) * (np.dot(C3, a_n) - np.dot(temp33_3, v_n))
    ddr2_hat = np.cross(ddr3_hat, r1_hat) + np.cross(ddr1_hat, r3_hat) + 2 * np.cross(dr3_hat, dr1_hat)

    # Angular Acceleration computation
    domega_RN_R = np.array([
        np.dot(dr3_hat, dr2_hat) + np.dot(r3_hat, ddr2_hat) - np.dot(omega_RN_R, dr1_hat),
        np.dot(dr1_hat, dr3_hat) + np.dot(r1_hat, ddr3_hat) - np.dot(omega_RN_R, dr2_hat),
        np.dot(dr2_hat, dr1_hat) + np.dot(r2_hat, ddr1_hat) - np.dot(omega_RN_R, dr3_hat)

    ])
    domega_RN_N = np.dot(RN.T, domega_RN_R)

    return sigma_RN, omega_RN_N, domega_RN_N

[docs]def test_celestialTwoBodyPointTestFunction(show_plots): """Module Unit Test""" [testResults, testMessage] = celestialTwoBodyPointTestFunction(show_plots) assert testResults < 1, testMessage
def celestialTwoBodyPointTestFunction(show_plots): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container moduleConfig = celestialTwoBodyPoint.celestialTwoBodyPointConfig() moduleWrap = unitTestSim.setModelDataWrap(moduleConfig) moduleWrap.ModelTag = "celestialTwoBodyPoint" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig) # Initialize the test module configuration data moduleConfig.singularityThresh = 1.0 * af.D2R # Previous Computation of Initial Conditions for the test a = af.E_radius * 2.8 e = 0.0 i = 0.0 Omega = 0.0 omega = 0.0 f = 60 * af.D2R (r, v) = af.OE2RV(af.mu_E, a, e, i, Omega, omega, f) r_BN_N = np.array([0., 0., 0.]) v_BN_N = np.array([0., 0., 0.]) celPositionVec = r celVelocityVec = v # Create input message and size it because the regular creator of that message # is not part of the test. # Navigation Input Message NavStateOutData = messaging.NavTransMsgPayload() # Create a structure for the input message NavStateOutData.r_BN_N = r_BN_N NavStateOutData.v_BN_N = v_BN_N navMsg = messaging.NavTransMsg().write(NavStateOutData) # Spice Input Message of Primary Body CelBodyData = messaging.EphemerisMsgPayload() CelBodyData.r_BdyZero_N = celPositionVec CelBodyData.v_BdyZero_N = celVelocityVec celBodyMsg = messaging.EphemerisMsg().write(CelBodyData) # Setup logging on the test module output message so that we get all the writes to it dataLog = moduleConfig.attRefOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # connect messages moduleConfig.transNavInMsg.subscribeTo(navMsg) moduleConfig.celBodyInMsg.subscribeTo(celBodyMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(macros.sec2nano(1.)) # seconds to stop simulation # Begin the simulation time run set above unitTestSim.ExecuteSimulation() ## Set truth values a = af.E_radius * 2.8 e = 0.0 i = 0.0 Omega = 0.0 omega = 0.0 f = 60 * af.D2R (r, v) = af.OE2RV(af.mu_E, a, e, i, Omega, omega, f) r_BN_N = np.array([0., 0., 0.]) v_BN_N = np.array([0., 0., 0.]) celPositionVec = r celVelocityVec = v # Begin Method R_P1 = celPositionVec - r_BN_N v_P1 = celVelocityVec - v_BN_N a_P1 = np.array([0., 0., 0.]) R_P2 = np.cross(R_P1, v_P1) v_P2 = np.cross(R_P1, a_P1) a_P2 = np.cross(v_P1, a_P1) sigma_RN, omega_RN_N, domega_RN_N = computeCelestialTwoBodyPoint(R_P1, v_P1, a_P1, R_P2, v_P2, a_P2) # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) # check sigma_RN moduleOutput = dataLog.sigma_RN # compare the module results to the truth values accuracy = 1e-12 # check a vector values for i in range(0, len(moduleOutput)): if not unitTestSupport.isArrayEqual(moduleOutput[i], sigma_RN, 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed sigma_RN unit test at t=" + str(moduleOutput[i, 0] * macros.NANO2SEC) + "sec\n") unitTestSupport.writeTeXSnippet('passFail11', textSnippetFailed, path) else: unitTestSupport.writeTeXSnippet('passFail11', textSnippetPassed, path) # check omega_RN_N moduleOutput = dataLog.omega_RN_N # compare the module results to the truth values # check a vector values for i in range(0, len(moduleOutput)): if not unitTestSupport.isArrayEqual(moduleOutput[i], omega_RN_N, 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed omega_RN_N unit test at t=" + str(moduleOutput[i, 0] * macros.NANO2SEC) + "sec\n") unitTestSupport.writeTeXSnippet('passFail12', textSnippetFailed, path) else: unitTestSupport.writeTeXSnippet('passFail12', textSnippetPassed, path) # check domega_RN_N moduleOutput = dataLog.domega_RN_N # compare the module results to the truth values # check a vector values for i in range(0, len(moduleOutput)): if not unitTestSupport.isArrayEqual(moduleOutput[i], domega_RN_N, 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed domega_RN_N unit test at t=" + str(moduleOutput[i, 0] * macros.NANO2SEC) + "sec\n") unitTestSupport.writeTeXSnippet('passFail13', textSnippetFailed, path) else: unitTestSupport.writeTeXSnippet('passFail13', textSnippetPassed, path) if testFailCount == 0: print("PASSED: " + "celestialTwoBodyPointTestFunction") else: print(testMessages) return [testFailCount, ''.join(testMessages)]
[docs]def test_secBodyCelestialTwoBodyPointTestFunction(show_plots): """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = secBodyCelestialTwoBodyPointTestFunction(show_plots) assert testResults < 1, testMessage
def secBodyCelestialTwoBodyPointTestFunction(show_plots): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container moduleConfig = celestialTwoBodyPoint.celestialTwoBodyPointConfig() moduleWrap = unitTestSim.setModelDataWrap(moduleConfig) moduleWrap.ModelTag = "secBodyCelestialTwoBodyPoint" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig) # Initialize the test module configuration data moduleConfig.singularityThresh = 1.0 * af.D2R # Previous Computation of Initial Conditions for the test a = af.E_radius * 2.8 e = 0.0 i = 0.0 Omega = 0.0 omega = 0.0 f = 60 * af.D2R (r, v) = af.OE2RV(af.mu_E, a, e, i, Omega, omega, f) r_BN_N = np.array([0., 0., 0.]) v_BN_N = np.array([0., 0., 0.]) celPositionVec = r celVelocityVec = v # Create input message and size it because the regular creator of that message # is not part of the test. # Navigation Input Message NavStateOutData = messaging.NavTransMsgPayload() # Create a structure for the input message NavStateOutData.r_BN_N = r_BN_N NavStateOutData.v_BN_N = v_BN_N navMsg = messaging.NavTransMsg().write(NavStateOutData) # Spice Input Message of Primary Body CelBodyData = messaging.EphemerisMsgPayload() CelBodyData.r_BdyZero_N = celPositionVec CelBodyData.v_BdyZero_N = celVelocityVec celBodyMsg = messaging.EphemerisMsg().write(CelBodyData) # Spice Input Message of Secondary Body SecBodyData = messaging.EphemerisMsgPayload() secPositionVec = [500., 500., 500.] SecBodyData.r_BdyZero_N = secPositionVec secVelocityVec = [0., 0., 0.] SecBodyData.v_BdyZero_N = secVelocityVec cel2ndBodyMsg = messaging.EphemerisMsg().write(SecBodyData) # Setup logging on the test module output message so that we get all the writes to it dataLog = moduleConfig.attRefOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # connect messages moduleConfig.transNavInMsg.subscribeTo(navMsg) moduleConfig.celBodyInMsg.subscribeTo(celBodyMsg) moduleConfig.secCelBodyInMsg.subscribeTo(cel2ndBodyMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(macros.sec2nano(1.)) # seconds to stop simulation # Begin the simulation time run set above unitTestSim.ExecuteSimulation() # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) # check sigma_RN moduleOutput = dataLog.sigma_RN # set the filtered output truth states trueVector = [0.474475084038, 0.273938317493, 0.191443718765] # compare the module results to the truth values accuracy = 1e-10 unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path) for i in range(0, len(moduleOutput)): # check a vector values if not unitTestSupport.isArrayEqual(moduleOutput[i], trueVector, 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed sigma_RN unit test at t=" + str(dataLog.times()[i] * macros.NANO2SEC) + "sec\n") unitTestSupport.writeTeXSnippet('passFail21', textSnippetFailed, path) else: unitTestSupport.writeTeXSnippet('passFail21', textSnippetPassed, path) # check omega_RN_N moduleOutput = dataLog.omega_RN_N # set the filtered output truth states trueVector = [1.59336987e-04, 2.75979758e-04, 2.64539877e-04] # compare the module results to the truth values for i in range(0, len(moduleOutput)): # check a vector values if not unitTestSupport.isArrayEqual(moduleOutput[i], trueVector, 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed omega_RN_N unit test at t=" + str(dataLog.times()[i] * macros.NANO2SEC) + "sec\n") unitTestSupport.writeTeXSnippet('passFail22', textSnippetFailed, path) else: unitTestSupport.writeTeXSnippet('passFail22', textSnippetPassed, path) # check domega_RN_N moduleOutput = dataLog.domega_RN_N # set the filtered output truth states trueVector = [-2.12284893e-07, 5.69968291e-08, -4.83648052e-08] # compare the module results to the truth values for i in range(0, len(moduleOutput)): # check a vector values if not unitTestSupport.isArrayEqual(moduleOutput[i], trueVector, 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed domega_RN_N unit test at t=" + str(dataLog.times()[i] * macros.NANO2SEC) + "sec\n") unitTestSupport.writeTeXSnippet('passFail23', textSnippetFailed, path) else: unitTestSupport.writeTeXSnippet('passFail23', textSnippetPassed, path) # Note that we can continue to step the simulation however we feel like. # Just because we stop and query data does not mean everything has to stop for good unitTestSim.ConfigureStopTime(macros.sec2nano(0.6)) # run an additional 0.6 seconds unitTestSim.ExecuteSimulation() if testFailCount == 0: print("PASSED: " + "secBodyCelestialTwoBodyPointTestFunction") else: print(testMessages) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": # celestialTwoBodyPointTestFunction(False) secBodyCelestialTwoBodyPointTestFunction(False)