Source code for test_PRV_Steering

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
#   Unit Test Script
#   Module Name:        PRV_Steering
#   Author:             Hanspeter Schaub
#   Creation Date:      December 18, 2015
#
import pytest
# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.
import numpy as np


#   Import all of the modules that we are going to call in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport
import matplotlib.pyplot as plt
from Basilisk.fswAlgorithms import prvSteering
from Basilisk.fswAlgorithms import rateServoFullNonlinear
from Basilisk.architecture import messaging

# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]@pytest.mark.parametrize("simCase", [0, 1]) def test_prvSteering(show_plots, simCase): # update "subModule" in this function name to reflect the module name """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = subModuleTestFunction(show_plots, simCase) assert testResults < 1, testMessage
def subModuleTestFunction(show_plots, simCase): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container moduleConfig = prvSteering.PrvSteeringConfig() moduleWrap = unitTestSim.setModelDataWrap(moduleConfig) moduleWrap.ModelTag = "prvSteering" servoConfig = rateServoFullNonlinear.rateServoFullNonlinearConfig() servoWrap = unitTestSim.setModelDataWrap(servoConfig) servoWrap.ModelTag = "rate_servo" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig) unitTestSim.AddModelToTask(unitTaskName, servoWrap, servoConfig) # configure BSK modules moduleConfig.K1 = 0.15 moduleConfig.K3 = 1.0 moduleConfig.omega_max = 1.5*macros.D2R servoConfig.Ki = 0.01 servoConfig.P = 150.0 servoConfig.integralLimit = 2./servoConfig.Ki * 0.1 servoConfig.knownTorquePntB_B = [0., 0., 0.] # Create input message and size it because the regular creator of that message # is not part of the test. # attGuidOut Message: guidCmdData = messaging.AttGuidMsgPayload() # Create a structure for the input message sigma_BR = [] if simCase == 0: sigma_BR = np.array([0.3, -0.5, 0.7]) if simCase == 1: sigma_BR = np.array([0, 0, 0]) guidCmdData.sigma_BR = sigma_BR omega_BR_B = np.array([0.010, -0.020, 0.015]) guidCmdData.omega_BR_B = omega_BR_B omega_RN_B = np.array([-0.02, -0.01, 0.005]) guidCmdData.omega_RN_B = omega_RN_B domega_RN_B = np.array([0.0002, 0.0003, 0.0001]) guidCmdData.domega_RN_B = domega_RN_B guidInMsg = messaging.AttGuidMsg().write(guidCmdData) # vehicleConfigData Message: vehicleConfigOut = messaging.VehicleConfigMsgPayload() I = [1000., 0., 0., 0., 800., 0., 0., 0., 800.] vehicleConfigOut.ISCPntB_B = I vcInMsg = messaging.VehicleConfigMsg().write(vehicleConfigOut) # wheelSpeeds Message rwSpeedMessage = messaging.RWSpeedMsgPayload() Omega = [10.0, 25.0, 50.0, 100.0] rwSpeedMessage.wheelSpeeds = Omega rwSpeedInMsg = messaging.RWSpeedMsg().write(rwSpeedMessage) # wheelConfigData message def writeMsgInWheelConfiguration(): rwConfigParams = messaging.RWArrayConfigMsgPayload() rwConfigParams.GsMatrix_B = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] rwConfigParams.JsList = [0.1, 0.1, 0.1, 0.1] rwConfigParams.numRW = 4 rwParamInMsg = messaging.RWArrayConfigMsg().write(rwConfigParams) return rwParamInMsg rwParamInMsg = writeMsgInWheelConfiguration() # wheelAvailability message def writeMsgInWheelAvailability(): rwAvailabilityMessage = messaging.RWAvailabilityMsgPayload() avail = [messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE] rwAvailabilityMessage.wheelAvailability = avail rwAvailInMsg = messaging.RWAvailabilityMsg().write(rwAvailabilityMessage) return rwAvailInMsg rwAvailInMsg = writeMsgInWheelAvailability() # Setup logging on the test module output message so that we get all the writes to it dataLog = servoConfig.cmdTorqueOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # connect input and output messages moduleConfig.guidInMsg.subscribeTo(guidInMsg) servoConfig.vehConfigInMsg.subscribeTo(vcInMsg) servoConfig.guidInMsg.subscribeTo(guidInMsg) servoConfig.rwParamsInMsg.subscribeTo(rwParamInMsg) servoConfig.rwAvailInMsg.subscribeTo(rwAvailInMsg) servoConfig.rwSpeedsInMsg.subscribeTo(rwSpeedInMsg) servoConfig.rateSteeringInMsg.subscribeTo(moduleConfig.rateCmdOutMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Step the simulation to 3*process rate so 4 total steps including zero unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() servoWrap.Reset(1) # this module reset function needs a time input (in NanoSeconds) unitTestSim.ConfigureStopTime(macros.sec2nano(2.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() # set the filtered output truth states trueVector = [] if simCase == 0: trueVector = [ [-2.9352922876097969, +6.2831737715827778, -4.0554726129822907] ,[-2.9352922876097969, +6.2831737715827778, -4.0554726129822907] ,[-2.9353853745179044, +6.2833455830962901, -4.0556481491012084] ,[-2.9352922876097969, +6.2831737715827778, -4.0554726129822907] ,[-2.9353853745179044, +6.2833455830962901, -4.0556481491012084] ] if simCase == 1: trueVector = [ [-1.39, 3.79, -1.39] ,[-1.39, 3.79, -1.39] ,[-1.39005, 3.7901, -1.390075] ,[-1.39, 3.79, -1.39] ,[-1.39005, 3.7901, -1.390075] ] # compare the module results to the truth values accuracy = 1e-12 for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(dataLog.torqueRequestBody[i], trueVector[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed torqueRequestBody unit test at t=" + str(dataLog.times()[i]*macros.NANO2SEC) + "sec\n") # If the argument provided at commandline "--show_plots" evaluates as true, # plot all figures if show_plots: plt.show() if testFailCount == 0: print("PASSED: " + moduleWrap.ModelTag) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a stand-along python scripts # authmatically executes the runUnitTest() method # if __name__ == "__main__": test_prvSteering(True, 1)