#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
# Unit Test Script
# Module Name: PRV_Steering
# Author: Hanspeter Schaub
# Creation Date: December 18, 2015
#
import pytest
# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.
import numpy as np
# Import all of the modules that we are going to call in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport
import matplotlib.pyplot as plt
from Basilisk.fswAlgorithms import prvSteering
from Basilisk.fswAlgorithms import rateServoFullNonlinear
from Basilisk.architecture import messaging
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]@pytest.mark.parametrize("simCase", [0, 1])
def test_prvSteering(show_plots, simCase): # update "subModule" in this function name to reflect the module name
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = subModuleTestFunction(show_plots, simCase)
assert testResults < 1, testMessage
def subModuleTestFunction(show_plots, simCase):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
moduleConfig = prvSteering.PrvSteeringConfig()
moduleWrap = unitTestSim.setModelDataWrap(moduleConfig)
moduleWrap.ModelTag = "prvSteering"
servoConfig = rateServoFullNonlinear.rateServoFullNonlinearConfig()
servoWrap = unitTestSim.setModelDataWrap(servoConfig)
servoWrap.ModelTag = "rate_servo"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
unitTestSim.AddModelToTask(unitTaskName, servoWrap, servoConfig)
# configure BSK modules
moduleConfig.K1 = 0.15
moduleConfig.K3 = 1.0
moduleConfig.omega_max = 1.5*macros.D2R
servoConfig.Ki = 0.01
servoConfig.P = 150.0
servoConfig.integralLimit = 2./servoConfig.Ki * 0.1
servoConfig.knownTorquePntB_B = [0., 0., 0.]
# Create input message and size it because the regular creator of that message
# is not part of the test.
# attGuidOut Message:
guidCmdData = messaging.AttGuidMsgPayload() # Create a structure for the input message
sigma_BR = []
if simCase == 0:
sigma_BR = np.array([0.3, -0.5, 0.7])
if simCase == 1:
sigma_BR = np.array([0, 0, 0])
guidCmdData.sigma_BR = sigma_BR
omega_BR_B = np.array([0.010, -0.020, 0.015])
guidCmdData.omega_BR_B = omega_BR_B
omega_RN_B = np.array([-0.02, -0.01, 0.005])
guidCmdData.omega_RN_B = omega_RN_B
domega_RN_B = np.array([0.0002, 0.0003, 0.0001])
guidCmdData.domega_RN_B = domega_RN_B
guidInMsg = messaging.AttGuidMsg().write(guidCmdData)
# vehicleConfigData Message:
vehicleConfigOut = messaging.VehicleConfigMsgPayload()
I = [1000., 0., 0.,
0., 800., 0.,
0., 0., 800.]
vehicleConfigOut.ISCPntB_B = I
vcInMsg = messaging.VehicleConfigMsg().write(vehicleConfigOut)
# wheelSpeeds Message
rwSpeedMessage = messaging.RWSpeedMsgPayload()
Omega = [10.0, 25.0, 50.0, 100.0]
rwSpeedMessage.wheelSpeeds = Omega
rwSpeedInMsg = messaging.RWSpeedMsg().write(rwSpeedMessage)
# wheelConfigData message
def writeMsgInWheelConfiguration():
rwConfigParams = messaging.RWArrayConfigMsgPayload()
rwConfigParams.GsMatrix_B = [
0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0
]
rwConfigParams.JsList = [0.1, 0.1, 0.1, 0.1]
rwConfigParams.numRW = 4
rwParamInMsg = messaging.RWArrayConfigMsg().write(rwConfigParams)
return rwParamInMsg
rwParamInMsg = writeMsgInWheelConfiguration()
# wheelAvailability message
def writeMsgInWheelAvailability():
rwAvailabilityMessage = messaging.RWAvailabilityMsgPayload()
avail = [messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE]
rwAvailabilityMessage.wheelAvailability = avail
rwAvailInMsg = messaging.RWAvailabilityMsg().write(rwAvailabilityMessage)
return rwAvailInMsg
rwAvailInMsg = writeMsgInWheelAvailability()
# Setup logging on the test module output message so that we get all the writes to it
dataLog = servoConfig.cmdTorqueOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# connect input and output messages
moduleConfig.guidInMsg.subscribeTo(guidInMsg)
servoConfig.vehConfigInMsg.subscribeTo(vcInMsg)
servoConfig.guidInMsg.subscribeTo(guidInMsg)
servoConfig.rwParamsInMsg.subscribeTo(rwParamInMsg)
servoConfig.rwAvailInMsg.subscribeTo(rwAvailInMsg)
servoConfig.rwSpeedsInMsg.subscribeTo(rwSpeedInMsg)
servoConfig.rateSteeringInMsg.subscribeTo(moduleConfig.rateCmdOutMsg)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Step the simulation to 3*process rate so 4 total steps including zero
unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
servoWrap.Reset(1) # this module reset function needs a time input (in NanoSeconds)
unitTestSim.ConfigureStopTime(macros.sec2nano(2.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
# set the filtered output truth states
trueVector = []
if simCase == 0:
trueVector = [
[-2.9352922876097969, +6.2831737715827778, -4.0554726129822907]
,[-2.9352922876097969, +6.2831737715827778, -4.0554726129822907]
,[-2.9353853745179044, +6.2833455830962901, -4.0556481491012084]
,[-2.9352922876097969, +6.2831737715827778, -4.0554726129822907]
,[-2.9353853745179044, +6.2833455830962901, -4.0556481491012084]
]
if simCase == 1:
trueVector = [
[-1.39, 3.79, -1.39]
,[-1.39, 3.79, -1.39]
,[-1.39005, 3.7901, -1.390075]
,[-1.39, 3.79, -1.39]
,[-1.39005, 3.7901, -1.390075]
]
# compare the module results to the truth values
accuracy = 1e-12
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(dataLog.torqueRequestBody[i], trueVector[i], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed torqueRequestBody unit test at t="
+ str(dataLog.times()[i]*macros.NANO2SEC) + "sec\n")
# If the argument provided at commandline "--show_plots" evaluates as true,
# plot all figures
if show_plots:
plt.show()
if testFailCount == 0:
print("PASSED: " + moduleWrap.ModelTag)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a stand-along python scripts
# authmatically executes the runUnitTest() method
#
if __name__ == "__main__":
test_prvSteering(True, 1)