# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
# Import some architectural stuff that we will probably always use
import sys, os, ast
import six
import matplotlib.pyplot as plt
try:
from collections.abc import OrderedDict
except ImportError:
from collections import OrderedDict
# Point the path to the module storage area
from Basilisk.architecture import sim_model
from Basilisk.architecture import alg_contain
import numpy as np
import array
import xml.etree.ElementTree as ET
import inspect
import threading
from time import sleep
try:
set
except NameError:
from sets import Set as set
from Basilisk.utilities import simulationArchTypes
from Basilisk.architecture import bskLogging
from Basilisk.utilities.simulationProgessBar import SimulationProgressBar
import warnings
# define ASCI color codes
processColor = '\u001b[32m'
taskColor = '\u001b[33m'
moduleColor = '\u001b[36m'
endColor = '\u001b[0m'
[docs]class LogBaseClass:
"""Logging Base class"""
def __init__(self, ReplaceName, LogPeriod, RefFunction, DataCols=1):
self.Period = LogPeriod
self.Name = ReplaceName
self.PrevLogTime = None
self.PrevValue = None
self.TimeValuePairs = array.array('d')
self.ArrayDim = DataCols + 1
self.CallableFunction = RefFunction
def clearItem(self):
self.TimeValuePairs = array.array('d')
self.PrevLogTime = None
self.PrevValue = None
[docs]class EventHandlerClass:
"""Event Handler Class"""
def __init__(self, eventName, eventRate=int(1E9), eventActive=False,
conditionList=[], actionList=[]):
self.eventName = eventName
self.eventActive = eventActive
self.eventRate = eventRate
self.conditionList = conditionList
self.actionList = actionList
self.occurCounter = 0
self.prevTime = -1
self.checkCall = None
self.operateCall = None
def methodizeEvent(self):
if self.checkCall != None:
return
funcString = 'def EVENT_check_' + self.eventName + '(self):\n'
funcString += ' if('
for condValue in self.conditionList:
funcString += ' ' + condValue + ' and'
funcString = funcString[:-3] + '):\n'
funcString += ' return 1\n'
funcString += ' return 0'
exec (funcString)
self.checkCall = eval('EVENT_check_' + self.eventName)
funcString = 'def EVENT_operate_' + self.eventName + '(self):\n'
for actionValue in self.actionList:
funcString += ' '
funcString += actionValue + '\n'
funcString += ' return 0'
exec (funcString)
self.operateCall = eval('EVENT_operate_' + self.eventName)
def checkEvent(self, parentSim):
nextTime = int(-1)
if self.eventActive == False:
return(nextTime)
nextTime = self.prevTime + self.eventRate - (self.prevTime%self.eventRate)
if self.prevTime < 0 or (parentSim.TotalSim.CurrentNanos%self.eventRate == 0):
nextTime = parentSim.TotalSim.CurrentNanos + self.eventRate
eventCount = self.checkCall(parentSim)
self.prevTime = parentSim.TotalSim.CurrentNanos
if eventCount > 0:
self.eventActive = False
self.operateCall(parentSim)
self.occurCounter += 1
return(nextTime)
[docs]class StructDocData:
"""Structure data documentation class"""
class StructElementDef:
def __init__(self, type, name, argstring, desc=''):
self.type = type
self.name = name
self.argstring = argstring
self.desc = desc
def __init__(self, strName):
self.strName = strName
self.structPopulated = False
self.structElements = {}
def clearItem(self):
self.structPopulated = False
self.structElements = {}
def populateElem(self, xmlSearchPath):
if self.structPopulated == True:
return
xmlFileUse = xmlSearchPath + '/' + self.strName + '.xml'
try:
xmlData = ET.parse(xmlFileUse)
except:
print("Failed to parse the XML structure for: " + self.strName)
print("This file does not exist most likely: " + xmlFileUse)
return
root = xmlData.getroot()
validElement = root.find("./compounddef[@id='" + self.strName + "']")
for newVariable in validElement.findall(".//memberdef[@kind='variable']"):
typeUse = newVariable.find('type').text if newVariable.find('type') is not None else \
None
nameUse = newVariable.find('name').text if newVariable.find('type') is not None else \
None
argstringUse = newVariable.find('argsstring').text if newVariable.find('argsstring') is not None else \
None
descUse = newVariable.find('./detaileddescription/para').text if newVariable.find(
'./detaileddescription/para') is not None else \
None
if descUse == None:
descUse = newVariable.find('./briefdescription/para').text if newVariable.find(
'./briefdescription/para') is not None else \
None
newElement = StructDocData.StructElementDef(typeUse, nameUse, argstringUse, descUse)
self.structElements.update({nameUse: newElement})
self.structPopulated = True
def printElem(self):
print(" " + self.strName + " Structure Elements:")
for key, value in self.structElements.items():
outputString = ''
outputString += value.type + " " + value.name
outputString += value.argstring if value.argstring is not None else ''
outputString += ': ' + value.desc if value.desc is not None else ''
print(" " + outputString)
class DataPairClass:
def __init__(self):
self.outputMessages = set([])
self.inputMessages = set([])
self.name = ""
self.outputDict = {}
[docs]class SimBaseClass:
"""Simulation Base Class"""
def __init__(self):
self.TotalSim = sim_model.SimModel()
self.TaskList = []
self.procList = []
self.pyProcList = []
self.StopTime = 0
self.nextEventTime = 0
self.NameReplace = {}
self.VarLogList = {}
self.eventMap = {}
self.simModules = set()
self.simBasePath = os.path.dirname(os.path.realpath(__file__)) + '/../'
self.dataStructIndex = self.simBasePath + '/xml/index.xml'
self.indexParsed = False
self.simulationInitialized = False
self.simulationFinished = False
self.bskLogger = bskLogging.BSKLogger()
self.showProgressBar = False
self.allModules = set()
[docs] def SetProgressBar(self, value):
"""
Shows a dynamic progress in the terminal while the simulation is executing.
"""
self.showProgressBar = value
[docs] def ShowExecutionOrder(self):
"""
Shows in what order the Basilisk processes, task lists and modules are executed
"""
for processData in self. TotalSim.processList:
print(f"{processColor}Process Name: {endColor}" + processData.processName +
" , " + processColor + "priority: " + endColor + str(processData.processPriority))
for task in processData.processTasks:
print(f"{taskColor}Task Name: {endColor}" + task.TaskPtr.TaskName +
", " + taskColor + "priority: " + endColor + str(task.taskPriority) +
", " + taskColor + "TaskPeriod: " + endColor + str(task.TaskPtr.TaskPeriod/1.0e9) + "s")
for module in task.TaskPtr.TaskModels:
print(moduleColor + "ModuleTag: " + endColor + module.ModelPtr.ModelTag +
", " + moduleColor + "priority: " + endColor + str(module.CurrentModelPriority))
print("")
for pyProc in self.pyProcList:
print(f"{processColor}PyProcess Name: {endColor}" + pyProc.Name +
" , " + processColor + "priority: " + endColor + str(pyProc.pyProcPriority))
for task in pyProc.taskList:
print(f"{taskColor}PyTask Name: {endColor}" + task.name +
", " + taskColor + "priority: " + endColor + str(task.priority) +
", " + taskColor + "TaskPeriod: " + endColor + str(task.rate / 1.0e9) + "s")
for module in task.modelList:
print(moduleColor + "PyModuleTag: " + endColor + module.modelName +
", " + moduleColor + "priority: " + endColor + str(module.modelPriority))
print("")
[docs] def AddModelToTask(self, TaskName, NewModel, ModelData=None, ModelPriority=-1):
"""
This function is responsible for passing on the logger to a module instance (model), adding the
model to a particular task, and defining
the order/priority that the model gets updated within the task.
:param TaskName (str): Name of the task
:param NewModel (obj): Model to add to the task
:param ModelData: None or struct containing, only used for C BSK modules
:param ModelPriority (int): Priority that determines when the model gets updated. (Higher number = Higher priority)
:return:
"""
i = 0
for Task in self.TaskList:
if Task.Name == TaskName:
Task.TaskData.AddNewObject(NewModel, ModelPriority)
TaskReplaceTag = 'self.TaskList[' + str(i) + ']'
TaskReplaceTag += '.TaskModels[' + str(len(Task.TaskModels)) + ']'
self.NameReplace[TaskReplaceTag] = NewModel.ModelTag
if ModelData is not None:
try:
ModelData.bskLogger = self.bskLogger
except:
pass
Task.TaskModels.append(ModelData)
self.simModules.add(inspect.getmodule(ModelData))
else:
try:
NewModel.bskLogger = self.bskLogger
except:
pass
Task.TaskModels.append(NewModel)
self.simModules.add(inspect.getmodule(NewModel))
return
i += 1
print("Could not find a Task with name: %(TaskName)s" % \
{"TaskName": TaskName})
[docs] def CreateNewProcess(self, procName, priority = -1):
"""
Creates a process and adds it to the sim
:param procName (str): Name of process
:param priority (int): Priority that determines when the model gets updated. (Higher number = Higher priority)
:return: simulationArchTypes.ProcessBaseClass object
"""
proc = simulationArchTypes.ProcessBaseClass(procName, priority)
self.procList.append(proc)
self.TotalSim.addNewProcess(proc.processData)
return proc
[docs] def CreateNewPythonProcess(self, procName, priority = -1):
"""
Creates the python analog of a sim-level process, that exists only on the python level in self.pyProcList
:param procName (str): Name of process
:param priority (int): Priority that determines when the model gets updated. (Higher number = Higher priority)
:return: simulationArchTypes.PythonProcessClass object
"""
proc = simulationArchTypes.PythonProcessClass(procName, priority)
i=0;
for procLoc in self.pyProcList:
if priority > procLoc.pyProcPriority:
self.pyProcList.insert(i, proc)
return proc
i+=1
self.pyProcList.append(proc)
return proc
[docs] def CreateNewTask(self, TaskName, TaskRate, InputDelay=0, FirstStart=0):
"""
Creates a simulation task on the C-level with a specific update-frequency (TaskRate), an optional delay, and
an optional start time.
:param TaskName (str): Name of Task
:param TaskRate (int): Number of nanoseconds to elapse before update() is called
:param InputDelay (int): Number of nanoseconds simulating a lag of the particular task# TODO: Check that this is [ns]
:param FirstStart (int): Number of nanoseconds to elapse before task is officially enabled
:return: simulationArchTypes.TaskBaseClass object
"""
Task = simulationArchTypes.TaskBaseClass(TaskName, TaskRate, InputDelay, FirstStart)
self.TaskList.append(Task)
return Task
[docs] def AddVariableForLogging(self, VarName, LogPeriod=0, StartIndex=0, StopIndex=0, VarType=None):
"""
Informs the sim to log a particular variable within a message
:param VarName: must be module tag string + period + variable name
:param LogPeriod: update rate at which to record the variable [ns]
:param StartIndex: starting index if the variable is an array
:param StopIndex: end index if the variable is an idea
:param VarType:
:return:
"""
SplitName = VarName.split('.')
Subname = '.'
Subname = Subname.join(SplitName[1:])
NoDotName = ''
NoDotName = NoDotName.join(SplitName)
if six.PY2:
NoDotName = NoDotName.translate(None, "[]'()")
else:
tr = str.maketrans("","", "[]'()")
NoDotName = NoDotName.translate(tr)
#NoDotName = NoDotName.translate({ord(c): None for c in "[]'()"})
inv_map = {v: k for k, v in list(self.NameReplace.items())}
if SplitName[0] in inv_map:
LogName = inv_map[SplitName[0]] + '.' + Subname
if (LogName in self.VarLogList):
return
if (type(eval(LogName)).__name__ == 'SwigPyObject'):
RefFunctionString = 'def Get' + NoDotName + '(self):\n'
RefFunctionString += ' return ['
LoopTerminate = False
i = 0
while not LoopTerminate:
RefFunctionString += 'sim_model.' + VarType + 'Array_getitem('
RefFunctionString += LogName + ', ' + str(StartIndex + i) + '),'
i += 1
if (i > StopIndex - StartIndex):
LoopTerminate = True
RefFunctionString = RefFunctionString[:-1] + ']'
exec (RefFunctionString)
methodHandle = eval('Get' + NoDotName)
elif (type(eval(LogName)).__name__ == 'list'):
RefFunctionString = 'def Get' + NoDotName + '(self):\n'
RefFunctionString += ' if isinstance(' + LogName + '[0], list):\n'
RefFunctionString += ' localList = sum(' + LogName + ',[])\n'
RefFunctionString += ' else:\n localList = ' + LogName + '\n'
RefFunctionString += ' return ['
LoopTerminate = False
i = 0
while not LoopTerminate:
RefFunctionString += 'localList[' + str(StartIndex + i) + '],'
i += 1
if (i > StopIndex - StartIndex):
LoopTerminate = True
RefFunctionString = RefFunctionString[:-1] + ']'
exec (RefFunctionString)
methodHandle = eval('Get' + NoDotName)
else:
RefFunctionString = 'def Get' + NoDotName + '(self):\n'
RefFunctionString += ' return ' + LogName
exec (RefFunctionString)
methodHandle = eval('Get' + NoDotName)
self.VarLogList[VarName] = LogBaseClass(LogName, LogPeriod,
methodHandle, StopIndex - StartIndex + 1)
else:
print("Could not find a structure that has the ModelTag: %(ModName)s" % \
{"ModName": SplitName[0]})
def ResetTask(self, taskName):
for Task in self.TaskList:
if Task.Name == taskName:
Task.resetTask(self.TotalSim.CurrentNanos)
[docs] def InitializeSimulation(self):
"""
Initialize the BSK simulation. This runs the SelfInit() and Reset() methods on each module.
"""
self.TotalSim.ResetSimulation()
self.TotalSim.selfInitSimulation()
for proc in self.pyProcList:
proc.selfInitProcess()
self.TotalSim.resetInitSimulation()
for proc in self.pyProcList:
proc.resetProcess(0)
for LogItem, LogValue in self.VarLogList.items():
LogValue.clearItem()
self.simulationInitialized = True
def RecordLogVars(self):
CurrSimTime = self.TotalSim.CurrentNanos
minNextTime = -1
for LogItem, LogValue in self.VarLogList.items():
LocalPrev = LogValue.PrevLogTime
if (LocalPrev != None and (CurrSimTime -
LocalPrev) < LogValue.Period):
if(minNextTime < 0 or LocalPrev + LogValue.Period < minNextTime):
minNextTime = LocalPrev + LogValue.Period
continue
CurrentVal = LogValue.CallableFunction(self)
LocalTimeVal = LogValue.TimeValuePairs
if (LocalPrev != CurrentVal):
LocalTimeVal.append(CurrSimTime)
try:
temp = (len(CurrentVal))
for Value in CurrentVal:
LocalTimeVal.append(Value)
except TypeError:
LocalTimeVal.append(CurrentVal)
LogValue.PrevLogTime = CurrSimTime
LogValue.PrevValue = CurrentVal
if(minNextTime < 0 or CurrSimTime + LogValue.Period < minNextTime):
minNextTime = CurrSimTime + LogValue.Period
return minNextTime
[docs] def ExecuteSimulation(self):
"""
run the simulation until the prescribed stop time.
"""
self.initializeEventChecks()
nextStopTime = self.TotalSim.NextTaskTime
nextPriority = -1
pyProcPresent = False
if len(self.pyProcList) > 0:
nextPriority = self.pyProcList[0].pyProcPriority
pyProcPresent = True
nextStopTime = self.pyProcList[0].nextCallTime()
progressBar = SimulationProgressBar(self.StopTime, self.showProgressBar)
while self.TotalSim.NextTaskTime <= self.StopTime:
if self.TotalSim.CurrentNanos >= self.nextEventTime >= 0:
self.nextEventTime = self.checkEvents()
self.nextEventTime = self.nextEventTime if self.nextEventTime >= self.TotalSim.NextTaskTime else self.TotalSim.NextTaskTime
if 0 <= self.nextEventTime < nextStopTime:
nextStopTime = self.nextEventTime
nextPriority = -1
self.TotalSim.StepUntilStop(nextStopTime, nextPriority)
progressBar.update(self.TotalSim.NextTaskTime)
nextPriority = -1
nextStopTime = self.StopTime
nextLogTime = self.RecordLogVars()
procStopTimes = []
for pyProc in self.pyProcList:
nextCallTime = pyProc.nextCallTime()
if nextCallTime <= self.TotalSim.CurrentNanos:
pyProc.executeTaskList(self.TotalSim.CurrentNanos)
nextCallTime = pyProc.nextCallTime()
procStopTimes.append(nextCallTime)
if pyProcPresent and nextStopTime >= min(procStopTimes):
nextStopTime = min(procStopTimes)
nextPriority = self.pyProcList[procStopTimes.index(nextStopTime)].pyProcPriority
if 0 <= nextLogTime < nextStopTime:
nextStopTime = nextLogTime
nextPriority = -1
nextStopTime = nextStopTime if nextStopTime >= self.TotalSim.NextTaskTime else self.TotalSim.NextTaskTime
progressBar.markComplete()
progressBar.close()
[docs] def GetLogVariableData(self, LogName):
"""
Pull the recorded module recorded variable. The first column is the variable recording time in
nano-seconds, the additional column(s) are the message data columns.
"""
TheArray = np.array(self.VarLogList[LogName].TimeValuePairs)
ArrayDim = self.VarLogList[LogName].ArrayDim
TheArray = np.reshape(TheArray, (TheArray.shape[0] // ArrayDim, ArrayDim))
return TheArray
[docs] def disableTask(self, TaskName):
"""
Disable this particular task from being executed.
"""
for Task in self.TaskList:
if Task.Name == TaskName:
Task.disable()
[docs] def enableTask(self, TaskName):
"""
Enable this particular task to be executed.
"""
for Task in self.TaskList:
if Task.Name == TaskName:
Task.enable()
def parseDataIndex(self):
self.dataStructureDictionary = {}
try:
xmlData = ET.parse(self.dataStructIndex)
except:
print("Failed to parse the XML index. Likely that it isn't present")
return
root = xmlData.getroot()
for child in root:
newStruct = StructDocData(child.attrib['refid'])
self.dataStructureDictionary.update({child.find('name').text:
newStruct})
self.indexParsed = True
[docs] def createNewEvent(self, eventName, eventRate=int(1E9), eventActive=False,
conditionList=[], actionList=[]):
"""
Create an event sequence that contains a series of tasks to be executed.
"""
if (eventName in list(self.eventMap.keys())):
return
newEvent = EventHandlerClass(eventName, eventRate, eventActive,
conditionList, actionList)
self.eventMap.update({eventName: newEvent})
def initializeEventChecks(self):
self.eventList = []
for key, value in self.eventMap.items():
value.methodizeEvent()
self.eventList.append(value)
self.nextEventTime = 0
def checkEvents(self):
nextTime = -1
for localEvent in self.eventList:
localNextTime = localEvent.checkEvent(self)
if(localNextTime >= 0 and (localNextTime < nextTime or nextTime <0)):
nextTime = localNextTime
return nextTime
def setEventActivity(self, eventName, activityCommand):
if eventName not in list(self.eventMap.keys()):
print("You asked me to set the status of an event that I don't have.")
return
self.eventMap[eventName].eventActive = activityCommand
[docs] def setAllButCurrentEventActivity(self, currentEventName, activityCommand, useIndex=False):
"""Set all event activity variables except for the currentEventName event. The ``useIndex`` flag can be used to
prevent enabling or disabling every task, and instead only alter the ones that belong to the same group (for
example, the same spacecraft). The distinction is made through an index set after the ``_`` symbol in the event
name. All events of the same group must have the same index."""
if useIndex:
index = currentEventName.partition('_')[2] # save the current event's index
for eventName in list(self.eventMap.keys()):
if currentEventName != eventName:
if useIndex:
if eventName.partition('_')[2] == index:
self.eventMap[eventName].eventActive = activityCommand
else:
self.eventMap[eventName].eventActive = activityCommand
[docs] def setModelDataWrap(self, modelData):
"""
Takes a module and returns an object that provides access to said module's SelfInit, Update, and Reset
methods.
Takes the module instance, collects all SwigPyObjects generated from the .i file (SelfInit,
Update and Reset), and attaches it to a alg_contain model instance so the modules standard functions can be
run at the python level.
:param modelData: model to gather functions for
:return: An alg_contain model that provides access to the original model's core functions
"""
algDict = {}
STR_SELFINIT = 'SelfInit'
STR_UPDATE = 'Update'
STR_RESET = 'Reset'
# SwigPyObject's Parsing:
# Collect all the SwigPyObjects present in the list. Only the methods SelfInit, Update and Restart
# are wrapped by Swig in the .i files. Therefore they are the only SwigPyObjects
def parseDirList(dirList):
algNames = []
for methodName in dirList:
methodObject = eval('sys.modules["' + module + '"].' + methodName)
if type(methodObject).__name__ == "SwigPyObject":
algNames.append(methodName)
return algNames
# Check the type of the algorithm, i.e. SelfInit, Update or Reset,
# and return the key to create a new dictionary D[str_method] = method
def checkMethodType(methodName):
if methodName[0:len(STR_SELFINIT)] == STR_SELFINIT:
return STR_SELFINIT
elif methodName[0:len(STR_UPDATE)] == STR_UPDATE:
return STR_UPDATE
elif methodName[0:len(STR_RESET)] == STR_RESET:
return STR_RESET
else:
raise ValueError('Cannot recognize the method'
'(I only assess SelfInit, Update and Reset methods). '
'Parse better.')
module = modelData.__module__
sysMod = sys.modules[module]
dirList = dir(sysMod)
algList = parseDirList(dirList)
# if the package has different levels we need to access the correct level of the package
if six.PY2:
level = -1
else:
level = 0
currMod = __import__(module, globals(), locals(), [], level)
moduleString = "currMod."
moduleNames = module.split(".")
if len(moduleNames) > 1:
moduleString += ".".join(moduleNames[1:]) + "."
for alg in algList:
key = checkMethodType(alg)
algDict[key] = alg
update = eval(moduleString + algDict[STR_UPDATE])
selfInit = eval(moduleString + algDict[STR_SELFINIT])
try:
resetArg = algDict[STR_RESET]
reset = eval(moduleString + resetArg)
modelWrap = alg_contain.AlgContain(modelData, update, selfInit, reset)
except:
modelWrap = alg_contain.AlgContain(modelData, update, selfInit)
return modelWrap
def SetCArray(InputList, VarType, ArrayPointer):
if(isinstance(ArrayPointer, (list, tuple))):
raise TypeError('Cannot set a C array if it is actually a python list. Just assign the variable to the list directly.')
CmdString = 'sim_model.' + VarType + 'Array_setitem(ArrayPointer, CurrIndex, CurrElem)'
CurrIndex = 0
for CurrElem in InputList:
exec (CmdString)
CurrIndex += 1
def getCArray(varType, arrayPointer, arraySize):
CmdString = 'outputList.append(sim_model.' + varType + 'Array_getitem(arrayPointer, currIndex))'
outputList = []
currIndex = 0
for currIndex in range(arraySize):
exec (CmdString)
currIndex += 1
return outputList
def synchronizeTimeHistories(arrayList):
returnArrayList = arrayList
timeCounter = 0
for i in range(len(returnArrayList)):
while returnArrayList[i][0,0] > returnArrayList[0][timeCounter,0]:
timeCounter += 1
for i in range(len(returnArrayList)):
while(returnArrayList[i][1,0] < returnArrayList[0][timeCounter,0]):
returnArrayList[i] = np.delete(returnArrayList[i], 0, 0)
timeCounter = -1
for i in range(len(returnArrayList)):
while returnArrayList[i][-1,0] < returnArrayList[0][timeCounter,0]:
timeCounter -= 1
for i in range(len(returnArrayList)):
while(returnArrayList[i][-2,0] > returnArrayList[0][timeCounter,0]):
returnArrayList[i] = np.delete(returnArrayList[i], -1, 0)
timeNow = returnArrayList[0][0,0] #Desirement is to have synched arrays match primary time
outputArrayList = []
indexPrev = [0]*len(returnArrayList)
outputArrayList = [[]]*len(returnArrayList)
timeNow = returnArrayList[0][0,0]
outputArrayList[0] = returnArrayList[0][0:-2, :]
for i in range(1, returnArrayList[0].shape[0]-1):
for j in range(1, len(returnArrayList)):
while(returnArrayList[j][indexPrev[j]+1,0] < returnArrayList[0][i,0]):
indexPrev[j] += 1
dataProp = returnArrayList[j][indexPrev[j]+1,1:] - returnArrayList[j][indexPrev[j],1:]
dataProp *= (timeNow - returnArrayList[j][indexPrev[j],0])/(returnArrayList[j][indexPrev[j]+1,0] - returnArrayList[j][indexPrev[j],0])
dataProp += returnArrayList[j][indexPrev[j],1:]
dataRow = [timeNow]
dataRow.extend(dataProp.tolist())
outputArrayList[j].append(dataRow)
timePrevious = timeNow
timeNow = returnArrayList[0][i,0]
for j in range(1, len(returnArrayList)):
outputArrayList[j] = np.array(outputArrayList[j])
return outputArrayList