Source code for test_unitGroundLocation



# ISC License
#
# Copyright (c) 2016-2017, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.



import os, inspect
import numpy as np
import pytest
from matplotlib import pyplot as plt

from mpl_toolkits.mplot3d import Axes3D


from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport
from Basilisk.utilities import macros
from Basilisk.utilities import RigidBodyKinematics as rbk
from Basilisk.utilities import orbitalMotion
from Basilisk.simulation import simMessages
from Basilisk.simulation import groundLocation

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
bskName = 'Basilisk'
splitPath = path.split(bskName)

[docs]def test_range(show_plots): """ Tests whether groundLocation: 1. Computes range correctly by evaluating slantRange; 2. Tests whether elevation is correctly evaluated; 3. Tests whether range limits impact access. 4. Tests whether multiple spacecraft are supported in parallel :return: """ testFailCount = 0 testMessages = [] simTaskName = "simTask" simProcessName = "simProcess" scSim = SimulationBaseClass.SimBaseClass() scSim.TotalSim.terminateSimulation() dynProcess = scSim.CreateNewProcess(simProcessName) simulationTime = macros.sec2nano(10.) simulationTimeStep = macros.sec2nano(1.) dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep)) # Initialize new atmosphere and drag model, add them to task groundTarget = groundLocation.GroundLocation() groundTarget.ModelTag = "groundTarget" groundTarget.planetRadius = orbitalMotion.REQ_EARTH * 1000. groundTarget.maximumRange = 100e3 # meters groundTarget.minimumElevation = np.radians(80.) groundTarget.specifyLocation(np.radians(0.), np.radians(0.), 0.) scSim.AddModelToTask(simTaskName, groundTarget) # Write out mock planet rotation, spacecraft position messages sc1_message = simMessages.SCPlusStatesSimMsg() sc1_message.r_BN_N = [orbitalMotion.REQ_EARTH*1e3 + 100e3, 0, 0] # SC1 is in range sc1_message_name = "sc1_msg" sc2_message = simMessages.SCPlusStatesSimMsg() # SC2 is placed inside/outside the visibility cone for the ground station sc2_message.r_BN_N = [orbitalMotion.REQ_EARTH*1e3 + 101e3,0, 0] sc2_message_name = "sc2_msg" sc3_message = simMessages.SCPlusStatesSimMsg() # SC3 is inside the altitude limit, but outside the visibility cone sc3_message.r_BN_N = rbk.euler3(np.radians(11.)).dot(np.array([orbitalMotion.REQ_EARTH * 1e3 + 100e3, 0, 0])) sc3_message_name = "sc3_msg" unitTestSupport.setMessage(scSim.TotalSim, simProcessName, sc1_message_name, sc1_message) unitTestSupport.setMessage(scSim.TotalSim, simProcessName, sc2_message_name, sc2_message) unitTestSupport.setMessage(scSim.TotalSim, simProcessName, sc3_message_name, sc3_message) groundTarget.addSpacecraftToModel(sc1_message_name) groundTarget.addSpacecraftToModel(sc2_message_name) groundTarget.addSpacecraftToModel(sc3_message_name) # Log the access indicator numDataPoints = 2 samplingTime = int(simulationTime / (numDataPoints - 1)) scSim.TotalSim.logThisMessage(groundTarget.accessOutMsgNames[0], samplingTime) scSim.TotalSim.logThisMessage(groundTarget.accessOutMsgNames[1], samplingTime) scSim.TotalSim.logThisMessage(groundTarget.accessOutMsgNames[2], samplingTime) # Run the sim scSim.InitializeSimulation() scSim.ConfigureStopTime(simulationTime) scSim.ExecuteSimulation() # Get the logged data sc1_access = scSim.pullMessageLogData(groundTarget.accessOutMsgNames[0] + '.hasAccess',range(1)) sc1_slant = scSim.pullMessageLogData(groundTarget.accessOutMsgNames[0] + '.slantRange',range(1)) sc1_elevation =scSim.pullMessageLogData(groundTarget.accessOutMsgNames[0] + '.elevation',range(1)) sc2_access = scSim.pullMessageLogData(groundTarget.accessOutMsgNames[1] + '.hasAccess',range(1)) sc2_slant = scSim.pullMessageLogData(groundTarget.accessOutMsgNames[1] + '.slantRange',range(1)) sc2_elevation = scSim.pullMessageLogData(groundTarget.accessOutMsgNames[1] + '.elevation',range(1)) sc3_access = scSim.pullMessageLogData(groundTarget.accessOutMsgNames[2] + '.hasAccess', range(1)) sc3_slant = scSim.pullMessageLogData(groundTarget.accessOutMsgNames[2] + '.slantRange',range(1)) sc3_elevation = scSim.pullMessageLogData(groundTarget.accessOutMsgNames[2] + '.elevation',range(1)) # Compare to expected values accuracy = 1e-8 ref_ranges = [100e3, 0, 0] ref_elevation = [np.radians(90.),0, 0] ref_access = [1, 0, 0] test_ranges = [sc1_slant[0,1], sc2_slant[0,1], sc3_slant[0,1]] test_elevation = [sc1_elevation[0,1],sc2_elevation[0,1],sc3_elevation[0,1]] test_access = [sc1_access[0,1],sc2_access[0,1],sc3_access[0,1]] range_worked = test_ranges == pytest.approx(ref_ranges, accuracy) elevation_worked = test_elevation == pytest.approx(ref_elevation, accuracy) access_worked = test_access == pytest.approx(ref_access, abs=1e-16) assert (range_worked and elevation_worked and access_worked)
[docs]def test_rotation(show_plots): """ Tests whether groundLocation: 1. Computes the current location based on the initial position and the rotation rate of the planet it is attached to. :return: """ testFailCount = 0 testMessages = [] simTime = 1. simTaskName = "simTask" simProcessName = "simProcess" scSim = SimulationBaseClass.SimBaseClass() scSim.TotalSim.terminateSimulation() dynProcess = scSim.CreateNewProcess(simProcessName) simulationTime = macros.sec2nano(simTime) simulationTimeStep = macros.sec2nano(1.) dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep)) # Initialize new atmosphere and drag model, add them to task groundTarget = groundLocation.GroundLocation() groundTarget.ModelTag = "groundTarget" groundTarget.planetRadius = orbitalMotion.REQ_EARTH * 1000. groundTarget.maximumRange = 200e3 # meters groundTarget.minimumElevation = np.radians(10.) groundTarget.specifyLocation(np.radians(0.), np.radians(-10.), 0.) scSim.AddModelToTask(simTaskName, groundTarget) # Write out mock planet rotation, spacecraft position messages sc1_message = simMessages.SCPlusStatesSimMsg() sc1_message.r_BN_N = np.array([orbitalMotion.REQ_EARTH*1e3 + 90e3, 0, 0]) # SC1 is in range sc1_message_name = "sc1_msg" unitTestSupport.setMessage(scSim.TotalSim, simProcessName, sc1_message_name, sc1_message) groundTarget.addSpacecraftToModel(sc1_message_name) planet_message = simMessages.SpicePlanetStateSimMsg() planet_message_name = "test_planet" planet_message.J20002Pfix = rbk.euler3(np.radians(-10.)).tolist() unitTestSupport.setMessage(scSim.TotalSim, simProcessName, planet_message_name, planet_message) groundTarget.planetInMsgName = planet_message_name # Log the access indicator numDataPoints = 2 samplingTime = int(simulationTime / (numDataPoints - 1)) scSim.TotalSim.logThisMessage(groundTarget.accessOutMsgNames[0], samplingTime) # Run the sim scSim.InitializeSimulation() scSim.ConfigureStopTime(simulationTime) scSim.ExecuteSimulation() # Get the logged data sc1_access = scSim.pullMessageLogData(groundTarget.accessOutMsgNames[0] + '.hasAccess',range(1)) sc1_slant = scSim.pullMessageLogData(groundTarget.accessOutMsgNames[0] + '.slantRange',range(1)) sc1_elevation =scSim.pullMessageLogData(groundTarget.accessOutMsgNames[0] + '.elevation',range(1)) sc1_azimuth = scSim.pullMessageLogData(groundTarget.accessOutMsgNames[0] + '.azimuth',range(1)) # Compare to expected values accuracy = 1e-8 ref_ranges = [90e3] ref_elevation = [np.radians(90.)] ref_access = [1] test_ranges = [sc1_slant[0,1]] test_elevation = [sc1_elevation[0,1]] test_access = [sc1_access[0,1]] range_worked = test_ranges == pytest.approx(ref_ranges, accuracy) elevation_worked = test_elevation == pytest.approx(ref_elevation, accuracy) access_worked = test_access == pytest.approx(ref_access, abs=1e-16) assert (range_worked and elevation_worked and access_worked)
[docs]def plot_geometry(groundLocation, scLocations, minimumElevation): """ Plots the location of a ground station, its field of view, and the positions of two spacecraft to verify whether the spacecraft have access to the ground station. :param groundLocation: [3,] : an ECI ground position. :param scLocations: [3,2] : two spacecraft position vectors :param minimumElevation: double : minimum view elevation angle in degrees. :return: """ fig = plt.figure() ax = fig.gca(projection='3d') # draw sphere u, v = np.mgrid[0:2 * np.pi:20j, 0:np.pi:20j] x = orbitalMotion.REQ_EARTH*1000 * np.cos(u) * np.sin(v) y = orbitalMotion.REQ_EARTH*1000 *np.sin(u) * np.sin(v) z = orbitalMotion.REQ_EARTH*1000 *np.cos(v) ax.plot_wireframe(x, y, z, color="g") # draw a point0 ax.scatter(groundLocation[0],groundLocation[1],groundLocation[2], color="r", s=100) # draw a vector from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d for location in scLocations: ax.scatter(location[0],location[1],location[2],color='k',s=100) ax.quiver(groundLocation[0],groundLocation[1],groundLocation[2], location[0],location[1],location[2], length=1.0, normalize=True) #ax.add_artist(a) plt.show()
if __name__ == '__main__': test_rotation(False)