''' '''
'''
ISC License
Copyright (c) 2019, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
#
# Unit Test Script
# Module Name: tamComm
# Author: Demet Cilden-Guler
# Creation Date: October 22, 2019
#
import pytest
import os, inspect
import numpy as np
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
bskName = 'Basilisk'
splitPath = path.split(bskName)
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport
from Basilisk.fswAlgorithms.tamComm import tamComm
from Basilisk.utilities import macros
from Basilisk.simulation.simFswInterfaceMessages import simFswInterfaceMessages
# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# update "module" in this function name to reflect the module name
[docs]def test_module(show_plots):
"""
Validation Test Description
---------------------------
This section describes the specific unit tests conducted on this module. \
The test contains 1 test and is located at 'test_tamComm.py'. \
The success criteria is to match the outputs with the generated truth.
Description of Variables Being Tested
-------------------------------------
In this file, we are checking the values of the variable:
tam_B
which is pulled from the log data from TAMSensorBodyFswMsg to see if they match with the expected truth values.
"""
# each test method requires a single assert method to be called
[testResults, testMessage] = tamCommTestFunction(show_plots)
assert testResults < 1, testMessage
[docs]def tamCommTestFunction(show_plots):
""" Test the tamComm module """
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# terminateSimulation() is needed if multiple unit test scripts are run
# that run a simulation for the test. This creates a fresh and
# consistent simulation environment for each test run.
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
moduleConfig = tamComm.tamConfigData()
moduleWrap = unitTestSim.setModelDataWrap(moduleConfig)
moduleWrap.ModelTag = "tamComm"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
# Initialize the test module configuration data
moduleConfig.tamOutMsgName = "tamSampleOutput"
moduleConfig.tamInMsgName = "tamSampleInput"
dcm3, _ = np.linalg.qr(np.random.normal(0, 1, (3, 3)))
moduleConfig.dcm_BS = dcm3.reshape(9, 1)
# Create input message and size it because the regular creator of that message
# is not part of the test.
inputMessageData = simFswInterfaceMessages.TAMSensorIntMsg()
inputMessageData.tam_S = [-1e-5, 2e-6, -3e-5] # Tesla
unitTestSupport.setMessage(unitTestSim.TotalSim,
unitProcessName,
moduleConfig.tamInMsgName,
inputMessageData)
# Setup logging on the test module output message so that we get all the writes to it
unitTestSim.TotalSim.logThisMessage(moduleConfig.tamOutMsgName, testProcessRate)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# compare the module results to the truth values
accuracy = 1e-12
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
moduleOutputName = "tam_B"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.tamOutMsgName + '.' + moduleOutputName,
list(range(3)))
# set the filtered output truth states
trueVector = [
[-1e-5, 2e-6, -3e-5],
[-1e-5, 2e-6, -3e-5],
[-1e-5, 2e-6, -3e-5]
]
for i in range(len(trueVector)):
trueVector[i] = np.dot(dcm3, trueVector[i])
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput,
accuracy, "TAM Output Vector",
testFailCount, testMessages)
# print out success message if no error were found
if testFailCount == 0:
print("PASSED: " + moduleWrap.ModelTag)
print("This test uses an accuracy value of " + str(accuracy))
else:
print("Failed: " + moduleWrap.ModelTag)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_module(False)