Source code for test_sunSafePoint

''' '''
'''
 ISC License

 Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder

 Permission to use, copy, modify, and/or distribute this software for any
 purpose with or without fee is hereby granted, provided that the above
 copyright notice and this permission notice appear in all copies.

 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

'''
#
#   Unit Test Script
#   Module Name:        sunSafePoint
#   Author:             Hanspeter Schaub
#   Creation Date:      April 25, 2018
#

import pytest
import sys, os, inspect
import numpy as np
# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))






# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport                  # general support file with common unit test functions
import matplotlib.pyplot as plt
from Basilisk.fswAlgorithms.sunSafePoint import sunSafePoint                   # import the module that is to be tested
from Basilisk.simulation.simFswInterfaceMessages import simFswInterfaceMessages
from Basilisk.utilities import macros as mc


# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
#@pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_

# The following 'parametrize' function decorator provides the parameters and expected results for each
#   of the multiple test runs for this test.
[docs]@pytest.mark.parametrize("case", [ (1) # sun is visible, vectors are not aligned ,(2) # sun is not visible, vectors are not aligned ,(3) # sun is visible, vectors are aligned ,(4) # sun is visible, vectors are oppositely aligned ,(5) # sun is visible, vectors are oppositely aligned, and command sc is b1 ,(6) # sun is not visible, vectors are not aligned, no specified omega_RN_B value ,(7) # sun is visible, vectors not aligned, nominal spin rate specified about sun heading vector ]) def test_module(show_plots, case): """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = sunSafePointTestFunction(show_plots, case) assert testResults < 1, testMessage
def sunSafePointTestFunction(show_plots, case): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # terminateSimulation() is needed if multiple unit test scripts are run # that run a simulation for the test. This creates a fresh and # consistent simulation environment for each test run. # Create test thread testProcessRate = mc.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container moduleConfig = sunSafePoint.sunSafePointConfig() moduleWrap = unitTestSim.setModelDataWrap(moduleConfig) moduleWrap.ModelTag = "sunSafePoint" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig) # Initialize the test module configuration data moduleConfig.attGuidanceOutMsgName = "outputName" moduleConfig.sunDirectionInMsgName = "inputSunVecName" moduleConfig.imuInMsgName = "inputIMUDataName" sHat_Cmd_B = np.array([0.0, 0.0 ,1.0]) if (case == 5): sHat_Cmd_B = np.array([1.0, 0.0, 0.0]) moduleConfig.sHatBdyCmd = sHat_Cmd_B moduleConfig.minUnitMag = 0.1 if (case == 2): omega_RN_B_Search = np.array([0.0, 0.0, 0.1]) moduleConfig.omega_RN_B = omega_RN_B_Search moduleConfig.smallAngle = 0.01*mc.D2R # Create input messages # inputSunVecData = simFswInterfaceMessages.NavAttIntMsg() # Create a structure for the input message sunVec_B = np.array([1.0, 1.0, 0.0]) if (case == 2 or case == 6): # no sun visible, providing a near zero norm direction vector */ sunVec_B = [0.0, moduleConfig.minUnitMag/2, 0.0] if (case == 3): sunVec_B = sHat_Cmd_B if (case == 4 or case == 5): sunVec_B = -sHat_Cmd_B inputSunVecData.vehSunPntBdy = sunVec_B unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, moduleConfig.sunDirectionInMsgName, inputSunVecData) inputIMUData = simFswInterfaceMessages.NavAttIntMsg() # Create a structure for the input message omega_BN_B = np.array([0.01, 0.50, -0.2]) inputIMUData.omega_BN_B = omega_BN_B unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, moduleConfig.imuInMsgName, inputIMUData) if (case == 7): moduleConfig.sunAxisSpinRate = 1.5*mc.D2R; omega_RN_B_Search = sunVec_B/np.linalg.norm(sunVec_B) * moduleConfig.sunAxisSpinRate # Setup logging on the test module output message so that we get all the writes to it unitTestSim.TotalSim.logThisMessage(moduleConfig.attGuidanceOutMsgName, testProcessRate) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(mc.sec2nano(1.)) # seconds to stop simulation # run the Reset() routine moduleWrap.Reset(0) # this module reset function needs a time input (in NanoSeconds) # Begin the simulation time run set above unitTestSim.ExecuteSimulation() # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) # # check sigma_BR # moduleOutputName = "sigma_BR" moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.attGuidanceOutMsgName + '.' + moduleOutputName, list(range(3))) # set the filtered output truth states if (case == 1 or case == 7): eHat = np.cross(sunVec_B,sHat_Cmd_B) eHat = eHat / np.linalg.norm(eHat) Phi = np.arccos(np.dot(sunVec_B/np.linalg.norm(sunVec_B),sHat_Cmd_B)) sigmaTrue = eHat * np.tan(Phi/4.0) trueVector = [ sigmaTrue.tolist(), sigmaTrue.tolist(), sigmaTrue.tolist() ] if (case == 2 or case == 3 or case == 6): trueVector = [ [0, 0, 0], [0, 0, 0], [0, 0, 0] ] if (case == 4): eHat = np.cross(sHat_Cmd_B,np.array([1,0,0])) eHat = eHat / np.linalg.norm(eHat) Phi = np.arccos(np.dot(sunVec_B/np.linalg.norm(sunVec_B),sHat_Cmd_B)) sigmaTrue = eHat * np.tan(Phi/4.0) trueVector = [ sigmaTrue.tolist(), sigmaTrue.tolist(), sigmaTrue.tolist() ] if (case == 5): eHat = np.cross(sHat_Cmd_B, np.array([0, 1, 0])) eHat = eHat / np.linalg.norm(eHat) Phi = np.arccos(np.dot(sunVec_B/np.linalg.norm(sunVec_B), sHat_Cmd_B)) sigmaTrue = eHat * np.tan(Phi / 4.0) trueVector = [ sigmaTrue.tolist(), sigmaTrue.tolist(), sigmaTrue.tolist() ] # compare the module results to the truth values accuracy = 1e-12 unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path) for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " + moduleOutputName + " unit test at t=" + str(moduleOutput[i,0] * mc.NANO2SEC) + "sec\n") # # check omega_BR_B # moduleOutputName = "omega_BR_B" moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.attGuidanceOutMsgName + '.' + moduleOutputName, list(range(3))) # set the filtered output truth states if (case == 1 or case == 3 or case == 4 or case == 5 or case == 6): trueVector = [ omega_BN_B.tolist(), omega_BN_B.tolist(), omega_BN_B.tolist() ] if (case == 2 or case == 7): trueVector = [ (omega_BN_B - omega_RN_B_Search).tolist(), (omega_BN_B - omega_RN_B_Search).tolist(), (omega_BN_B - omega_RN_B_Search).tolist() ] # compare the module results to the truth values for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " + moduleOutputName + " unit test at t=" + str(moduleOutput[i,0] * mc.NANO2SEC) + "sec\n") # # check omega_RN_B # moduleOutputName = "omega_RN_B" moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.attGuidanceOutMsgName + '.' + moduleOutputName, list(range(3))) # set the filtered output truth states if (case == 1 or case == 3 or case == 4 or case == 5 or case == 6): trueVector = [ [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0] ] if (case == 2 or case == 7): trueVector = [ omega_RN_B_Search, omega_RN_B_Search, omega_RN_B_Search ] # compare the module results to the truth values for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " + moduleOutputName + " unit test at t=" + str(moduleOutput[i,0] * mc.NANO2SEC) + "sec\n") # # check domega_RN_B # moduleOutputName = "domega_RN_B" moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.attGuidanceOutMsgName + '.' + moduleOutputName, list(range(3))) # set the filtered output truth states trueVector = [ [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0] ] # compare the module results to the truth values for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " + moduleOutputName + " unit test at t=" + str(moduleOutput[i,0] * mc.NANO2SEC) + "sec\n") # If the argument provided at commandline "--show_plots" evaluates as true, # plot all figures # if show_plots: # # plot a sample variable. # plt.figure(1) # plt.plot(variableState[:,0]*macros.NANO2SEC, variableState[:,1], label='Sample Variable') # plt.legend(loc='upper left') # plt.xlabel('Time [s]') # plt.ylabel('Variable Description [unit]') # plt.show() # print out success message if no error were found snippentName = "passFail" + str(case) if testFailCount == 0: colorText = 'ForestGreen' print("PASSED: " + moduleWrap.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}' else: colorText = 'Red' print("FAILED: " + moduleWrap.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}' unitTestSupport.writeTeXSnippet(snippentName, passedText, path) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": sunSafePointTestFunction(False, 5)