''' '''
'''
ISC License
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
#
# Integrated Unit Test Script
# Purpose: Run a test of the star tracker module
# Author: John Alcorn
# Creation Date: October 12, 2016
#
import pytest
import sys, os, inspect
import numpy as np
import ctypes
import math
import csv
import logging
import six
from Basilisk.utilities import MessagingAccess
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
import matplotlib.pyplot as plt
from Basilisk.utilities import macros
from Basilisk.simulation import star_tracker
from Basilisk.simulation import sim_model
from Basilisk.utilities import RigidBodyKinematics as rbk
from Basilisk.simulation import spice_interface
# methods
def listStack(vec,simStopTime,unitProcRate):
# returns a list duplicated the number of times needed to be consistent with module output
return [vec] * int(simStopTime/(float(unitProcRate)/float(macros.sec2nano(1))))
def setRandomWalk(self, senNoiseStd = 0.0, errorBounds = [[1e6],[1e6],[1e6]]):
# sets the module random walk variables
PMatrix = [[senNoiseStd, 0., 0.], [0., senNoiseStd, 0.], [0., 0., senNoiseStd]]
self.PMatrix = PMatrix
self.walkBounds = errorBounds
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test.
[docs]@pytest.mark.parametrize("useFlag, testCase", [
(False,'basic'),
(False,'noise'),
(False,'walk bounds')
])
# provide a unique test method name, starting with test_
def test_unitSimStarTracker(show_plots, useFlag, testCase):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = unitSimStarTracker(show_plots, useFlag, testCase)
assert testResults < 1, testMessage
def unitSimStarTracker(show_plots, useFlag, testCase):
testFail = False
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcName = "TestProcess" # arbitrary name (don't change)
# initialize SimulationBaseClass
unitSim = SimulationBaseClass.SimBaseClass()
# create the task and specify the integration update time
unitProcRate = macros.sec2nano(0.1)
unitProcRate_s = macros.NANO2SEC*unitProcRate
unitProc = unitSim.CreateNewProcess(unitProcName)
unitProc.addTask(unitSim.CreateNewTask(unitTaskName, unitProcRate))
# configure module
StarTracker = star_tracker.StarTracker()
StarTracker.ModelTag = "StarTracker"
setRandomWalk(StarTracker)
# configure module input message
OutputStateData = star_tracker.SCPlusStatesSimMsg()
OutputStateData.r_BN_N = [0,0,0]
OutputStateData.v_BN_N = [0,0,0]
OutputStateData.sigma_BN = np.array([0,0,0])
OutputStateData.omega_BN_B = [0,0,0]
OutputStateData.TotalAccumDVBdy = [0,0,0]
OutputStateData.MRPSwitchCount = 0
SpiceTimeOutput = spice_interface.SpiceTimeSimMsg()
SpiceTimeOutput.J2000Current = 0 # s Current J2000 elapsed time double
SpiceTimeOutput.JulianDateCurrent = 0 # s Current JulianDate double
SpiceTimeOutput.GPSSeconds = 0 # s Current GPS seconds double
SpiceTimeOutput.GPSWeek = 0 # -- Current GPS week value uint16_t
SpiceTimeOutput.GPSRollovers = 0 # -- Count on the number of GPS rollovers uint64_t
# get module output fields and lengths
StarTrackerOutput = star_tracker.STSensorIntMsg()
fieldNames = list()
fieldLengths = list()
#python3 only has one integral type (int), though int behaves just as long
if six.PY2:
dtypeTuple = (float, long, int)
else:
dtypeTuple = (float, int, int)
for fieldName in dir(StarTrackerOutput):
if fieldName.find('__') < 0 and fieldName.find('this') < 0:
if(callable(getattr(StarTrackerOutput,fieldName))):
continue
fieldNames.append(fieldName)
if type(getattr(StarTrackerOutput,fieldName)).__name__ == 'list':
fieldLengths.append(len(getattr(StarTrackerOutput,fieldName)))
elif isinstance(getattr(StarTrackerOutput,fieldName), dtypeTuple):
fieldLengths.append(1)
trueVector = dict()
print(testCase)
if testCase == 'basic':
# this test verifies basic input and output
simStopTime = 0.5
sigma = np.array([-0.390614710591786, -0.503642740963740, 0.462959869561285])
OutputStateData.sigma_BN = sigma
J2000Current = 6129.15171032306 # 12-Oct-2016 15:38:27.7719122171402
SpiceTimeOutput.J2000Current = J2000Current
trueVector['qInrtl2Case'] = listStack(rbk.MRP2EP(sigma),simStopTime,unitProcRate)
trueVector['timeTag'] = np.arange(0,0+simStopTime*1E9,unitProcRate_s*1E9)
elif testCase == 'noise':
simStopTime = 1000.
noiseStd = 0.1
stdCorrectionFactor = 1.5 # this needs to be used because of the Gauss Markov module. need to fix the GM module
setRandomWalk(StarTracker, noiseStd*stdCorrectionFactor, [[1.0e-13],[1.0e-13],[1.0e-13]])
sigma = np.array([0,0,0])
OutputStateData.sigma_BN = sigma
trueVector['qInrtl2Case'] = [noiseStd] * 3
trueVector['timeTag'] = np.arange(0,0+simStopTime*1E9,unitProcRate_s*1E9)
elif testCase == 'walk bounds':
# this test checks the walk bounds of random walk
simStopTime = 1000.
noiseStd = 0.01
stdCorrectionFactor = 1.5 # this needs to be used because of the Gauss Markov module. need to fix the GM module
walkBound = 0.1
setRandomWalk(StarTracker, noiseStd*stdCorrectionFactor, [[walkBound],[walkBound],[walkBound]])
sigma = np.array([0,0,0])
OutputStateData.sigma_BN = sigma
trueVector['qInrtl2Case'] = [walkBound + noiseStd*3] * 3
trueVector['timeTag'] = np.arange(0,0+simStopTime*1E9,unitProcRate_s*1E9)
else:
raise Exception('invalid test case')
# add module to the task
unitSim.AddModelToTask(unitTaskName, StarTracker)
# log module output message
unitSim.TotalSim.logThisMessage(StarTracker.outputStateMessage, unitProcRate)
# configure inertial_state_output message
# OutputStateData_messageSize = 8*3*11
OutputStateData_messageSize = OutputStateData.getStructSize()
unitSim.TotalSim.CreateNewMessage("TestProcess", "inertial_state_output", OutputStateData_messageSize, 2)
unitSim.TotalSim.WriteMessageData("inertial_state_output", OutputStateData_messageSize, 0, OutputStateData )
# configure spice_time_output_data message
SpiceTimeOutput_messageSize = 8*3+16+64
SpiceTimeOutput_messageSize = SpiceTimeOutput.getStructSize()
unitSim.TotalSim.CreateNewMessage("TestProcess", "spice_time_output_data", SpiceTimeOutput_messageSize, 2)
unitSim.TotalSim.WriteMessageData("spice_time_output_data", SpiceTimeOutput_messageSize, 0, SpiceTimeOutput )
unitSim.InitializeSimulation()
unitSim.ConfigureStopTime(macros.sec2nano(simStopTime))
unitSim.ExecuteSimulation()
# pull message log data and assemble into dict
moduleOutput = dict()
for i in range(0,len(fieldNames)):
moduleOutputName = fieldNames[i]
moduleOutput[moduleOutputName] = unitSim.pullMessageLogData(StarTracker.outputStateMessage + '.' + moduleOutputName, list(range(fieldLengths[i])))
# convert quaternion output to prv
moduleOutput['prvInrtl2Case'] = np.zeros([int(simStopTime/unitProcRate_s)+1,3])
for i in range(0,int(simStopTime/unitProcRate_s)+1):
moduleOutput['prvInrtl2Case'][i,:] = rbk.EP2PRV(moduleOutput['qInrtl2Case'][i,1:])
# # plot the output as prv
# plt.plot(moduleOutput['qInrtl2Case'][:,0]*macros.NANO2SEC,moduleOutput['prvInrtl2Case'])
# plt.show()
# for i in range(0,4):
# # plt.figure()
# plt.plot(moduleOutput['qInrtl2Case'][:,0]*macros.NANO2SEC,moduleOutput['qInrtl2Case'][:,i+1])
# plt.xlabel('Time (s)')
# plt.ylabel('Quaternion')
# # plt.xlim((0,1000))
# plt.show()
if not 'accuracy' in vars():
accuracy = 1e-6
for moduleOutputName in fieldNames:
if moduleOutputName is 'qInrtl2Case':
if testCase == 'noise':
for i in range(0,3):
if np.abs(np.mean(moduleOutput['prvInrtl2Case'][:,i])) > 0.01 \
or np.abs(np.std(moduleOutput['prvInrtl2Case'][:,i]) - trueVector['qInrtl2Case'][i]) > 0.01 :
testFail = True
break
elif testCase == 'walk bounds':
for i in range(0,3):
print(np.max(np.abs(np.asarray(moduleOutput['prvInrtl2Case'][:,i]))))
if np.max(np.abs(np.asarray(moduleOutput['prvInrtl2Case'][:,i]))) > trueVector['qInrtl2Case'][i]:
testFail = True
break
else:
for i in range(0,len(trueVector['qInrtl2Case'])):
if not unitTestSupport.isArrayEqual(moduleOutput['qInrtl2Case'][i], trueVector['qInrtl2Case'][i], 3, accuracy):
testFail = True
break
if testFail: # break outer loop
break
#elif moduleOutputName is 'timeTag':
# # check timeTag
# for i in range(0,len(trueVector['timeTag'])):
# if not unitTestSupport.isDoubleEqual(moduleOutput['timeTag'][i], trueVector['timeTag'][i], accuracy):
# testFail = True
# print "Ugh."
# print moduleOutput['timeTag'][i]
# print trueVector['timeTag'][i]
# break
if testFail:
testFailCount += 1
testMessages.append("FAILED: " + StarTracker.ModelTag + " Module failed " +
moduleOutputName + " unit test")
np.set_printoptions(precision=16)
# print out success message if no error were found
if testFailCount == 0:
print("PASSED ")
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
# This statement below ensures that the unit test script can be run as a
# stand-along python script
if __name__ == "__main__":
test_unitSimStarTracker(
False, # show_plots
False, # useFlag
'walk bounds' # testCase
)