''' '''
'''
ISC License
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
import sys, os, inspect
import numpy
import pytest
import math
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
import matplotlib.pyplot as plt
from Basilisk.simulation import spacecraftPlus
from Basilisk.utilities import macros
from Basilisk.simulation import gravityEffector
from Basilisk.simulation import extForceTorque
from Basilisk.utilities import RigidBodyKinematics
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_
def spacecraftPlusAllTest(show_plots):
[testResults, testMessage] = test_SCTranslation(show_plots)
assert testResults < 1, testMessage
[testResults, testMessage] = test_SCTransAndRotation(show_plots)
assert testResults < 1, testMessage
[testResults, testMessage] = test_SCRotation(show_plots)
assert testResults < 1, testMessage
[testResults, testMessage] = test_SCTransBOE(show_plots)
assert testResults < 1, testMessage
[testResults, testMessage] = test_SCPointBVsPointC(show_plots)
assert testResults < 1, testMessage
[docs]def test_SCTranslation(show_plots):
"""Module Unit Test"""
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraftPlus.SpacecraftPlus()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.01) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
unitTestSim.earthGravBody = gravityEffector.GravBodyData()
unitTestSim.earthGravBody.bodyInMsgName = "earth_planet_data"
unitTestSim.earthGravBody.outputMsgName = "earth_display_frame_data"
unitTestSim.earthGravBody.mu = 0.3986004415E+15 # meters!
unitTestSim.earthGravBody.isCentralBody = True
unitTestSim.earthGravBody.useSphericalHarmParams = False
scObject.gravField.gravBodies = spacecraftPlus.GravBodyVector([unitTestSim.earthGravBody])
unitTestSim.TotalSim.logThisMessage(scObject.scStateOutMsgName, testProcessRate)
# Define initial conditions of the spacecraft
scObject.hub.mHub = 100
scObject.hub.r_CN_NInit = [[-4020338.690396649], [7490566.741852513], [5248299.211589362]]
scObject.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]]
unitTestSim.InitializeSimulation()
unitTestSim.AddVariableForLogging(scObject.ModelTag + ".totOrbAngMomPntN_N", testProcessRate, 0, 2, 'double')
unitTestSim.AddVariableForLogging(scObject.ModelTag + ".totOrbEnergy", testProcessRate, 0, 0, 'double')
stopTime = 10.0
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
orbAngMom_N = unitTestSim.GetLogVariableData(scObject.ModelTag + ".totOrbAngMomPntN_N")
orbEnergy = unitTestSim.GetLogVariableData(scObject.ModelTag + ".totOrbEnergy")
plt.close("all")
plt.figure()
plt.clf()
plt.plot(orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,1] - orbAngMom_N[0,1])/orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,2] - orbAngMom_N[0,2])/orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,3] - orbAngMom_N[0,3])/orbAngMom_N[0,3])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInOrbitalAngularMomentumTranslationOnly", "Change in Orbital Angular Momentum Translation Only", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(orbEnergy[:,0]*1e-9, (orbEnergy[:,1] - orbEnergy[0,1])/orbEnergy[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInOrbitalEnergyTranslationOnly", "Change in Orbital Energy Translation Only", plt, r"width=0.8\textwidth", path)
if show_plots:
plt.show()
plt.close('all')
moduleOutput = unitTestSim.pullMessageLogData(scObject.scStateOutMsgName + '.r_BN_N',
list(range(3)))
truePos = [
[-4072255.7737936215, 7456050.4649078, 5258610.029627514]
]
initialOrbAngMom_N = [
[orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]]
]
finalOrbAngMom = [
[orbAngMom_N[-1,0], orbAngMom_N[-1,1], orbAngMom_N[-1,2], orbAngMom_N[-1,3]]
]
initialOrbEnergy = [
[orbEnergy[0,1]]
]
finalOrbEnergy = [
[orbEnergy[-1,0], orbEnergy[-1,1]]
]
accuracy = 1e-10
for i in range(0,len(truePos)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(moduleOutput[-1,:],truePos[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: SCHub Translation test failed pos unit test")
for i in range(0,len(initialOrbAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: SCHub Translation test failed orbital angular momentum unit test")
for i in range(0,len(initialOrbEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i],initialOrbEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: SCHub Translation test failed orbital energy unit test")
if testFailCount == 0:
print("PASSED: " + " SCHub Translation Integrated Sim Test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
[docs]def test_SCTransAndRotation(show_plots):
"""Module Unit Test"""
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraftPlus.SpacecraftPlus()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.001) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
unitTestSim.earthGravBody = gravityEffector.GravBodyData()
unitTestSim.earthGravBody.bodyInMsgName = "earth_planet_data"
unitTestSim.earthGravBody.outputMsgName = "earth_display_frame_data"
unitTestSim.earthGravBody.mu = 0.3986004415E+15 # meters!
unitTestSim.earthGravBody.isCentralBody = True
unitTestSim.earthGravBody.useSphericalHarmParams = False
scObject.gravField.gravBodies = spacecraftPlus.GravBodyVector([unitTestSim.earthGravBody])
unitTestSim.TotalSim.logThisMessage(scObject.scStateOutMsgName, testProcessRate)
# Define initial conditions of the spacecraft
scObject.hub.mHub = 100
scObject.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
scObject.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
scObject.hub.r_CN_NInit = [[-4020338.690396649], [7490566.741852513], [5248299.211589362]]
scObject.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]]
scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.hub.omega_BN_BInit = [[0.5], [-0.4], [0.7]]
unitTestSim.InitializeSimulation()
unitTestSim.AddVariableForLogging(scObject.ModelTag + ".totOrbEnergy", testProcessRate, 0, 0, 'double')
unitTestSim.AddVariableForLogging(scObject.ModelTag + ".totOrbAngMomPntN_N", testProcessRate, 0, 2, 'double')
unitTestSim.AddVariableForLogging(scObject.ModelTag + ".totRotAngMomPntC_N", testProcessRate, 0, 2, 'double')
unitTestSim.AddVariableForLogging(scObject.ModelTag + ".totRotEnergy", testProcessRate, 0, 0, 'double')
stopTime = 10.0
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
orbEnergy = unitTestSim.GetLogVariableData(scObject.ModelTag + ".totOrbEnergy")
orbAngMom_N = unitTestSim.GetLogVariableData(scObject.ModelTag + ".totOrbAngMomPntN_N")
rotAngMom_N = unitTestSim.GetLogVariableData(scObject.ModelTag + ".totRotAngMomPntC_N")
rotEnergy = unitTestSim.GetLogVariableData(scObject.ModelTag + ".totRotEnergy")
r_BN_NOutput = unitTestSim.pullMessageLogData(scObject.scStateOutMsgName + '.r_BN_N',
list(range(3)))
sigma_BNOutput = unitTestSim.pullMessageLogData(scObject.scStateOutMsgName + '.sigma_BN',
list(range(3)))
truePos = [
[-4072255.7737936215, 7456050.4649078, 5258610.029627514]
]
trueSigma = [
[3.73034285e-01, -2.39564413e-03, 2.08570797e-01]
]
initialOrbAngMom_N = [
[orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]]
]
finalOrbAngMom = [
[orbAngMom_N[-1,0], orbAngMom_N[-1,1], orbAngMom_N[-1,2], orbAngMom_N[-1,3]]
]
initialRotAngMom_N = [
[rotAngMom_N[0,1], rotAngMom_N[0,2], rotAngMom_N[0,3]]
]
finalRotAngMom = [
[rotAngMom_N[-1,0], rotAngMom_N[-1,1], rotAngMom_N[-1,2], rotAngMom_N[-1,3]]
]
initialOrbEnergy = [
[orbEnergy[0,1]]
]
finalOrbEnergy = [
[orbEnergy[-1,0], orbEnergy[-1,1]]
]
initialRotEnergy = [
[rotEnergy[0,1]]
]
finalRotEnergy = [
[rotEnergy[-1,0], rotEnergy[-1,1]]
]
plt.close('all')
plt.figure()
plt.clf()
plt.plot(orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,1] - orbAngMom_N[0,1])/orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,2] - orbAngMom_N[0,2])/orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,3] - orbAngMom_N[0,3])/orbAngMom_N[0,3])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInOrbitalAngularMomentumTranslationAndRotation", "Change in Orbital Angular Momentum Translation And Rotation", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(orbEnergy[:,0]*1e-9, (orbEnergy[:,1] - orbEnergy[0,1])/orbEnergy[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInOrbitalEnergyTranslationAndRotation", "Change in Orbital Energy Translation And Rotation", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,1] - rotAngMom_N[0,1])/rotAngMom_N[0,1], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,2] - rotAngMom_N[0,2])/rotAngMom_N[0,2], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,3] - rotAngMom_N[0,3])/rotAngMom_N[0,3])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInRotationalAngularMomentumTranslationAndRotation", "Change in Rotational Angular Momentum Translation And Rotation", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(rotEnergy[:,0]*1e-9, (rotEnergy[:,1] - rotEnergy[0,1])/rotEnergy[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInRotationalEnergyTranslationAndRotation", "Change in Rotational Energy Translation And Rotation", plt, r"width=0.8\textwidth", path)
if show_plots:
plt.show()
plt.close('all')
accuracy = 1e-8
for i in range(0,len(truePos)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(r_BN_NOutput[-1,:],truePos[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed pos unit test")
for i in range(0,len(trueSigma)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(sigma_BNOutput[-1,:],trueSigma[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed attitude unit test")
accuracy = 1e-10
for i in range(0,len(initialOrbAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed orbital angular momentum unit test")
for i in range(0,len(initialRotAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed rotational angular momentum unit test")
for i in range(0,len(initialRotEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i],initialRotEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed rotational energy unit test")
for i in range(0,len(initialOrbEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i],initialOrbEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed orbital energy unit test")
if testFailCount == 0:
print("PASSED: " + " Spacecraft Translation and Rotation Integrated Sim Test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
[docs]def test_SCRotation(show_plots):
"""Module Unit Test"""
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraftPlus.SpacecraftPlus()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
timeStep = 0.001
testProcessRate = macros.sec2nano(timeStep) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
unitTestSim.TotalSim.logThisMessage(scObject.scStateOutMsgName, testProcessRate)
# Define initial conditions of the spacecraft
scObject.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
scObject.hub.omega_BN_BInit = [[0.5], [-0.4], [0.7]]
# BOE for rotational dynamics
h = numpy.dot(numpy.asarray(scObject.hub.IHubPntBc_B),numpy.asarray(scObject.hub.omega_BN_BInit).flatten())
H = numpy.linalg.norm(h)
n3_B = -h/H
# Find DCM
n2_B = numpy.zeros(3)
n2_B[1] = 0.1
n2_B[0] = -n2_B[1]*n3_B[1]/n3_B[0]
n2_B = n2_B/numpy.linalg.norm(n2_B)
n1_B = numpy.cross(n2_B,n3_B)
n1_B = n1_B/(numpy.linalg.norm(n1_B))
dcm_BN = numpy.zeros([3,3])
dcm_BN[:,0] = n1_B
dcm_BN[:,1] = n2_B
dcm_BN[:,2] = n3_B
h3_N = numpy.array([0,0,-H])
h3_B = numpy.dot(dcm_BN,h3_N)
h3_Ncheck = numpy.dot(dcm_BN.transpose(),h3_B)
sigmaCalc = RigidBodyKinematics.C2MRP(dcm_BN)
scObject.hub.sigma_BNInit = [[sigmaCalc[0]], [sigmaCalc[1]], [sigmaCalc[2]]]
unitTestSim.InitializeSimulation()
unitTestSim.AddVariableForLogging(scObject.ModelTag + ".totRotAngMomPntC_N", testProcessRate, 0, 2, 'double')
unitTestSim.AddVariableForLogging(scObject.ModelTag + ".totRotEnergy", testProcessRate, 0, 0, 'double')
stopTime = 10.0
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
rotAngMom_N = unitTestSim.GetLogVariableData(scObject.ModelTag + ".totRotAngMomPntC_N")
rotEnergy = unitTestSim.GetLogVariableData(scObject.ModelTag + ".totRotEnergy")
rotAngMomMag = numpy.zeros(len(rotAngMom_N))
for i in range(0,len(rotAngMom_N)):
rotAngMomMag[i] = numpy.linalg.norm(numpy.asarray(rotAngMom_N[i,1:4]))
trueSigma = [
[5.72693314e-01, 5.10734375e-01, -3.07377611e-01]
]
initialRotAngMom_N = [
[numpy.linalg.norm(numpy.asarray(rotAngMom_N[0,1:4]))]
]
finalRotAngMom = [
[rotAngMom_N[-1,0], numpy.linalg.norm(numpy.asarray(rotAngMom_N[-1,1:4]))]
]
initialRotEnergy = [
[rotEnergy[0,1]]
]
finalRotEnergy = [
[rotEnergy[-1,0], rotEnergy[-1,1]]
]
moduleOutput = unitTestSim.pullMessageLogData(scObject.scStateOutMsgName + '.sigma_BN',
list(range(3)))
omega_BNOutput = unitTestSim.pullMessageLogData(scObject.scStateOutMsgName + '.omega_BN_B',
list(range(3)))
check = 0
for i in range(0,len(moduleOutput)):
if check == 0 and moduleOutput[i+1,2] < moduleOutput[i,2]:
check = 1
if check == 1 and moduleOutput[i+1,2] > moduleOutput[i,2]:
check = 2
index = i+1
break
sigmaBeforeSwitch = moduleOutput[index-1,1:4]
sigmaBeforeBefore = moduleOutput[index-2,1:4]
sigmaAfterSwitch = moduleOutput[index,:]
deltaT = (moduleOutput[index-1,0] - moduleOutput[index-2,0])*1e-9
yPrime = (sigmaBeforeSwitch - sigmaBeforeBefore)/deltaT
sigmaGhost = sigmaBeforeSwitch + yPrime*deltaT
sigmaAfterAnalytical = - sigmaGhost/numpy.dot(numpy.linalg.norm(numpy.asarray(sigmaGhost)),numpy.linalg.norm(numpy.asarray(sigmaGhost)))
timeArray = numpy.zeros(5)
sigmaArray = numpy.zeros([3,5])
omegaAnalyticalArray = numpy.zeros([3,5])
omegaArray = numpy.zeros([4,5])
for i in range(0, 5):
idx = int(stopTime/timeStep*(i+1)/5)
timeArray[i] = moduleOutput[idx, 0]
sigmaArray[:, i] = moduleOutput[idx, 1:4]
sigma = sigmaArray[:, i]
sigmaNorm = numpy.linalg.norm(sigma)
sigma1 = sigma[0]
sigma2 = sigma[1]
sigma3 = sigma[2]
omegaArray[:,i] = omega_BNOutput[idx, :]
omegaAnalyticalArray[0,i] = -H/(1 + sigmaNorm**2)**2*(8*sigma1*sigma3 - 4*sigma2*(1 - sigmaNorm**2))/scObject.hub.IHubPntBc_B[0][0]
omegaAnalyticalArray[1,i] = -H/(1 + sigmaNorm**2)**2*(8*sigma2*sigma3 + 4*sigma1*(1 - sigmaNorm**2))/scObject.hub.IHubPntBc_B[1][1]
omegaAnalyticalArray[2,i] = -H/(1 + sigmaNorm**2)**2*(4*(-sigma1**2 - sigma2**2 + sigma3**2) + (1 - sigmaNorm**2)**2)/scObject.hub.IHubPntBc_B[2][2]
plt.close("all") # clear out earlier figures
plt.figure()
plt.clf()
plt.plot(moduleOutput[:,0]*1e-9, moduleOutput[:,1], moduleOutput[:,0]*1e-9, moduleOutput[:,2], moduleOutput[:,0]*1e-9, moduleOutput[:,3])
plt.plot(moduleOutput[index,0]*1e-9, moduleOutput[index,1],'bo')
plt.plot(moduleOutput[index,0]*1e-9, sigmaGhost[0],'yo')
plt.plot(moduleOutput[index-1,0]*1e-9, moduleOutput[index-1,1],'bo')
plt.xlabel("Time (s)")
plt.ylabel("MRPs")
unitTestSupport.writeFigureLaTeX("scPlusMRPs", "Attitude of Spacecraft in MRPs", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(moduleOutput[index - 3: index + 3,0]*1e-9, moduleOutput[index - 3: index + 3,1],"b")
plt.plot(moduleOutput[index-1,0]*1e-9, moduleOutput[index-1,1],'bo', label = "Basilisk " + r"$\sigma_{1,t-1}$")
plt.plot(moduleOutput[index,0]*1e-9, moduleOutput[index,1],'ro', label = "Basilisk " + r"$\sigma_{1,t}$")
plt.plot(moduleOutput[index,0]*1e-9, sigmaGhost[0],'ko', label = "Basilisk " + r"$\sigma_{1,0}$")
plt.plot([moduleOutput[index-1,0]*1e-9, moduleOutput[index,0]*1e-9], [moduleOutput[index-1,1], sigmaGhost[0]],'--k')
axes = plt.gca()
axes.set_ylim([-0.5,0.5])
plt.legend(loc ='upper right',numpoints = 1)
plt.xlabel("Time (s)")
plt.ylabel("MRPs")
unitTestSupport.writeFigureLaTeX("scPlusMRPSwitching", "MRP Switching", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(rotAngMom_N[:,0]*1e-9, (rotAngMomMag - rotAngMomMag[0])/rotAngMomMag[0])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInRotationalAngularMomentumRotationOnly", "Change in Rotational Angular Momentum Rotation Only", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(rotEnergy[:,0]*1e-9, (rotEnergy[:,1] - rotEnergy[0,1])/rotEnergy[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInRotationalEnergyRotationOnly", "Change in Rotational Energy Rotation Only", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(omega_BNOutput[:,0]*1e-9,omega_BNOutput[:,1],label = r"$\omega_1$" + " Basilisk")
plt.plot(omega_BNOutput[:,0]*1e-9,omega_BNOutput[:,2],label = r"$\omega_2$" + " Basilisk")
plt.plot(omega_BNOutput[:,0]*1e-9,omega_BNOutput[:,3], label = r"$\omega_3$" + " Basilisk")
plt.plot(timeArray*1e-9,omegaAnalyticalArray[0,:],'bo', label = r"$\omega_1$" + " BOE")
plt.plot(timeArray*1e-9,omegaAnalyticalArray[1,:],'go', label = r"$\omega_2$" + " BOE")
plt.plot(timeArray*1e-9,omegaAnalyticalArray[2,:],'ro', label = r"$\omega_3$" + " BOE")
plt.xlabel("Time (s)")
plt.ylabel("Angular Velocity (rad/s)")
plt.legend(loc ='lower right',numpoints = 1, prop = {'size': 6.5})
unitTestSupport.writeFigureLaTeX("scPlusBasiliskVsBOECalcForRotation", "Basilisk Vs BOE Calc For Rotation", plt, r"width=0.8\textwidth", path)
if show_plots:
plt.show()
plt.close("all")
accuracy = 1e-8
for i in range(0,len(trueSigma)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(moduleOutput[-1,:],trueSigma[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed attitude unit test")
accuracy = 1e-10
for i in range(0,len(initialRotAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed rotational angular momentum unit test")
for i in range(0,len(initialRotEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i],initialRotEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Rotation Integrated test failed rotational energy unit test")
omegaArray = omegaArray.transpose()
omegaAnalyticalArray = omegaAnalyticalArray.transpose()
for i in range(0,len(omegaAnalyticalArray)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(omegaArray[i],omegaAnalyticalArray[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Rotation Integrated test Rotational BOE unit test")
accuracy = 1e-5
if not unitTestSupport.isArrayEqualRelative(sigmaAfterSwitch,sigmaAfterAnalytical,1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Rotation Integrated test failed MRP Switching unit test")
if testFailCount == 0:
print("PASSED: " + "Spacecraft Rotation Integrated test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
[docs]def test_SCTransBOE(show_plots):
"""Module Unit Test"""
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraftPlus.SpacecraftPlus()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
timeStep = 0.1
testProcessRate = macros.sec2nano(timeStep) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
# Define conditions for the forces and times
F1 = 3.
F2 = -7.
t1 = 3.
t2 = 6.
t3 = 10.
# Add external force and torque
extFTObject = extForceTorque.ExtForceTorque()
extFTObject.ModelTag = "externalDisturbance"
extFTObject.extTorquePntB_B = [[0], [0], [0]]
extFTObject.extForce_B = [[F1], [0], [0]]
scObject.addDynamicEffector(extFTObject)
unitTestSim.AddModelToTask(unitTaskName, extFTObject)
unitTestSim.TotalSim.logThisMessage(scObject.scStateOutMsgName, testProcessRate)
# Define initial conditions of the spacecraft
scObject.hub.mHub = 100
scObject.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
scObject.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
# Set the initial values for the states
scObject.hub.r_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.hub.v_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]]
unitTestSim.InitializeSimulation()
stopTime = t1
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
extFTObject.extTorquePntB_B = [[0], [0], [0]]
extFTObject.extForce_B = [[0], [0], [0]]
stopTime = t2
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
extFTObject.extTorquePntB_B = [[0], [0], [0]]
extFTObject.extForce_B = [[F2], [0], [0]]
stopTime = t3
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
r_BN_NOutput = unitTestSim.pullMessageLogData(scObject.scStateOutMsgName + '.r_BN_N',
list(range(3)))
v_BN_NOutput = unitTestSim.pullMessageLogData(scObject.scStateOutMsgName + '.v_BN_N',
list(range(3)))
# BOE calcs
a1 = F1/scObject.hub.mHub
a2 = F2/scObject.hub.mHub
v1 = a1*t1
v2 = v1
v3 = v2 + a2*(t3-t2)
x1 = 0.5*v1*t1
x2 = x1 + v2*(t2-t1)
t0 = t2 - v2/a2
x3 = x2 + 0.5*v2*(t0-t2) + 0.5*v3*(t3-t0)
# truth and Basilisk
truthV = [v1, v2, v3]
truthX = [x1, x2, x3]
basiliskV = [v_BN_NOutput[int(t1/timeStep), 1], v_BN_NOutput[int(t2/timeStep), 1], v_BN_NOutput[int(t3/timeStep), 1]]
basiliskX = [r_BN_NOutput[int(t1/timeStep), 1], r_BN_NOutput[int(t2/timeStep), 1], r_BN_NOutput[int(t3/timeStep), 1]]
plt.close('all')
plt.figure()
plt.clf()
plt.plot(r_BN_NOutput[:,0]*1e-9, r_BN_NOutput[:,1],'-b',label = "Basilisk")
plt.plot([t1, t2, t3], [x1, x2, x3],'ro',markersize = 6.5,label = "BOE")
plt.xlabel('time (s)')
plt.ylabel('X (m)')
plt.legend(loc ='upper left',numpoints = 1)
PlotName = "scPlusTranslationPositionBOE"
PlotTitle = "Translation Position BOE"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(v_BN_NOutput[:,0]*1e-9, v_BN_NOutput[:,1],'-b',label = "Basilisk")
plt.plot([t1, t2, t3], [v1, v2, v3],'ro',markersize = 6.5,label = "BOE")
plt.xlabel('time (s)')
plt.ylabel('X velocity (m/s)')
plt.legend(loc ='lower left',numpoints = 1)
PlotName = "scPlusTranslationVelocityBOE"
PlotTitle = "Translation Velocity BOE"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
if show_plots:
plt.show()
plt.close('all')
accuracy = 1e-10
for i in range(0,3):
# check a vector values
if abs((truthX[i] - basiliskX[i])/truthX[i]) > accuracy:
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation BOE Integrated test failed pos unit test")
for i in range(0,3):
# check a vector values
if abs((truthV[i] - basiliskV[i])/truthV[i]) > accuracy:
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation BOE Integrated test failed velocity unit test")
if testFailCount == 0:
print("PASSED: " + " Spacecraft Translation BOE Integrated Sim Test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
[docs]def test_SCPointBVsPointC(show_plots):
"""Module Unit Test"""
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraftPlus.SpacecraftPlus()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.01) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
# Define location of force
rFBc_B = numpy.array([0.3, -0.7, 0.4])
force_B = numpy.array([0.5, 0.6, -0.2])
torquePntC_B = numpy.cross(rFBc_B,force_B)
# Add external force and torque
extFTObject = extForceTorque.ExtForceTorque()
extFTObject.ModelTag = "externalDisturbance"
extFTObject.extTorquePntB_B = [[torquePntC_B[0]], [torquePntC_B[1]], [torquePntC_B[2]]]
extFTObject.extForce_B = [[force_B[0]], [force_B[1]], [force_B[2]]]
scObject.addDynamicEffector(extFTObject)
unitTestSim.AddModelToTask(unitTaskName, extFTObject)
unitTestSim.TotalSim.logThisMessage(scObject.scStateOutMsgName, testProcessRate)
# Define initial conditions of the spacecraft
scObject.hub.mHub = 100
scObject.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
scObject.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
scObject.hub.r_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.hub.v_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.hub.omega_BN_BInit = [[0.5], [-0.4], [0.7]]
unitTestSim.InitializeSimulation()
stopTime = 10.0
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
r_CN_NOutput1 = unitTestSim.pullMessageLogData(scObject.scStateOutMsgName + '.r_CN_N',
list(range(3)))
sigma_BNOutput1 = unitTestSim.pullMessageLogData(scObject.scStateOutMsgName + '.sigma_BN',
list(range(3)))
####################
scObject = spacecraftPlus.SpacecraftPlus()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.01) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
# Define location of force
rBcB_B = numpy.array([0.4, 0.5, 0.2])
rFB_B = rBcB_B + rFBc_B
torquePntB_B = numpy.cross(rFB_B,force_B)
# Add external force and torque
extFTObject = extForceTorque.ExtForceTorque()
extFTObject.ModelTag = "externalDisturbance"
extFTObject.extTorquePntB_B = [[torquePntB_B[0]], [torquePntB_B[1]], [torquePntB_B[2]]]
extFTObject.extForce_B = [[force_B[0]], [force_B[1]], [force_B[2]]]
scObject.addDynamicEffector(extFTObject)
unitTestSim.AddModelToTask(unitTaskName, extFTObject)
unitTestSim.TotalSim.logThisMessage(scObject.scStateOutMsgName, testProcessRate)
# Define initial conditions of the spacecraft
scObject.hub.mHub = 100
scObject.hub.r_BcB_B = [[rBcB_B[0]], [rBcB_B[1]], [rBcB_B[2]]]
scObject.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
scObject.hub.r_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.hub.v_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.hub.omega_BN_BInit = [[0.5], [-0.4], [0.7]]
unitTestSim.InitializeSimulation()
stopTime = 10.0
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
r_CN_NOutput2 = unitTestSim.pullMessageLogData(scObject.scStateOutMsgName + '.r_CN_N',
list(range(3)))
sigma_BNOutput2 = unitTestSim.pullMessageLogData(scObject.scStateOutMsgName + '.sigma_BN',
list(range(3)))
plt.figure()
plt.clf()
plt.plot(r_CN_NOutput1[:,0]*1e-9, r_CN_NOutput1[:,1], 'k', label = 'Torque About Point C', linewidth=3.0)
plt.plot(r_CN_NOutput1[:,0]*1e-9,r_CN_NOutput1[:,2], 'k', r_CN_NOutput1[:,0]*1e-9, r_CN_NOutput1[:,3], 'k', linewidth=3.0)
plt.plot(r_CN_NOutput2[:,0]*1e-9, r_CN_NOutput2[:,1], '--c', label = 'Torque About Point B')
plt.plot(r_CN_NOutput2[:,0]*1e-9,r_CN_NOutput2[:,2], '--c', r_CN_NOutput2[:,0]*1e-9, r_CN_NOutput1[:,3], '--c')
plt.xlabel('Time (s)')
plt.ylabel('Inertial Position (m)')
plt.legend(loc ='upper left', handlelength=3.5)
PlotName = "scPlusPointBVsPointCTranslation"
PlotTitle = "PointB Vs PointC Translation"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(sigma_BNOutput1[:,0]*1e-9, sigma_BNOutput1[:,1], 'k', label = 'Torque About Point C', linewidth=3.0)
plt.plot(sigma_BNOutput1[:,0]*1e-9, sigma_BNOutput1[:,2], 'k', sigma_BNOutput1[:,0]*1e-9, sigma_BNOutput1[:,3], 'k', linewidth=3.0)
plt.plot(sigma_BNOutput2[:,0]*1e-9, sigma_BNOutput2[:,1], '--c', label = 'Torque About Point B')
plt.plot(sigma_BNOutput2[:,0]*1e-9, sigma_BNOutput2[:,2], '--c', sigma_BNOutput2[:,0]*1e-9, sigma_BNOutput2[:,3], '--c')
plt.xlabel('Time (s)')
plt.ylabel('MRPs')
plt.legend(loc ='upper right', handlelength=3.5)
PlotName = "scPlusPointBVsPointCAttitude"
PlotTitle = "PointB Vs PointC Attitude"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
if show_plots:
plt.show()
plt.close('all')
accuracy = 1e-8
if not unitTestSupport.isArrayEqualRelative(r_CN_NOutput1[-1,:],r_CN_NOutput2[-1,1:4],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Point B Vs Point C test failed pos unit test")
if not unitTestSupport.isArrayEqualRelative(sigma_BNOutput1[-1,:],sigma_BNOutput2[-1,1:4],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Point B Vs Point C test failed attitude unit test")
if testFailCount == 0:
print("PASSED: " + " Spacecraft Point B Vs Point C Integrated Sim Test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
if __name__ == "__main__":
test_SCPointBVsPointC(True)