# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
import pytest
import os, inspect
import numpy as np
import math
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
bskName = 'Basilisk'
splitPath = path.split(bskName)
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.simulation import simpleTransmitter
from Basilisk.simulation import simpleInstrument
from Basilisk.simulation import partitionedStorageUnit
from Basilisk.simulation import simMessages
from Basilisk.simulation import simFswInterfaceMessages
from Basilisk.utilities import macros
# update "module" in this function name to reflect the module name
def test_module():
# each test method requires a single assert method to be called
default_results, default_message = test_default()
status_results, status_message = test_status()
testResults = sum([default_results, status_results])
testMessage = [default_message, status_message]
assert testResults < 1, testMessage
[docs]def test_default():
"""
**Validation Test Description**
1. Whether the simpleTransmitter provides the right output message (baudRate) while on;
2. Whether the simpleTransmitter provides the right output message (baudRate) while off.
:param show_plots: Not used; no plots to be shown.
:return:
"""
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Create the test module
testModule = simpleTransmitter.SimpleTransmitter()
testModule.ModelTag = "transmitter"
testModule.nodeBaudRate = 9600. # baud
testModule.packetSize = -9600 # bits
testModule.numBuffers = 1
testModule.nodeDataOutMsgName = "TransmitterMsg"
unitTestSim.AddModelToTask(unitTaskName, testModule)
# Create an instrument
instrument = simpleInstrument.SimpleInstrument()
instrument.ModelTag = "instrument1"
instrument.nodeBaudRate = 9600. # baud
instrument.nodeDataName = "Instrument 1" # baud
instrument.nodeDataOutMsgName = "Instrument1Msg"
unitTestSim.AddModelToTask(unitTaskName, instrument)
# Create a partitionedStorageUnit and attach the instrument to it
dataMonitor = partitionedStorageUnit.PartitionedStorageUnit()
dataMonitor.ModelTag = "dataMonitor"
dataMonitor.storageUnitDataOutMsgName = "dataMonitorMsg"
dataMonitor.storageCapacity = 8E9 # bits (1 GB)
dataMonitor.addDataNodeToModel(instrument.nodeDataOutMsgName)
dataMonitor.addDataNodeToModel(testModule.nodeDataOutMsgName)
unitTestSim.AddModelToTask(unitTaskName, dataMonitor)
testModule.addStorageUnitToTransmitter(dataMonitor.storageUnitDataOutMsgName)
unitTestSim.TotalSim.logThisMessage(testModule.nodeDataOutMsgName, testProcessRate)
unitTestSim.InitializeSimulation()
unitTestSim.ConfigureStopTime(macros.sec2nano(3.0)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
generatedData = unitTestSim.pullMessageLogData(testModule.nodeDataOutMsgName + ".baudRate")
print(generatedData)
# compare the module results to the truth values
accuracy = 1e-16
trueData = 9600. # Module should be on after enough data is accrued
testArray = [0, 0, 0, trueData, trueData, trueData, trueData] # Should go through three iterations of no data downlinked
testFailCount, testMessages = unitTestSupport.compareDoubleArray(
testArray, generatedData, accuracy, "dataOutput",
testFailCount, testMessages)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
def test_status():
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
testModule = simpleTransmitter.SimpleTransmitter()
testModule.ModelTag = "transmitter"
testModule.nodeBaudRate = 9600. # baud
testModule.packetSize = -9600 # bits
testModule.numBuffers = 1
testModule.dataStatus = 0
unitTestSim.AddModelToTask(unitTaskName, testModule)
# Create an instrument
instrument = simpleInstrument.SimpleInstrument()
instrument.ModelTag = "instrument1"
instrument.nodeBaudRate = 1200. # baud
instrument.nodeDataName = "Instrument 1" # baud
instrument.nodeDataOutMsgName = "Instrument1Msg"
unitTestSim.AddModelToTask(unitTaskName, instrument)
# Create a partitionedStorageUnit and attach the instrument to it
dataMonitor = partitionedStorageUnit.PartitionedStorageUnit()
dataMonitor.ModelTag = "dataMonitor"
dataMonitor.storageUnitDataOutMsgName = "dataMonitorMsg"
dataMonitor.storageCapacity = 8E9 # bits (1 GB)
dataMonitor.addDataNodeToModel(instrument.nodeDataOutMsgName)
dataMonitor.addDataNodeToModel(testModule.nodeDataOutMsgName)
unitTestSim.AddModelToTask(unitTaskName, dataMonitor)
testModule.addStorageUnitToTransmitter(dataMonitor.storageUnitDataOutMsgName)
# Setup logging on the test module output message so that we get all the writes to it
unitTestSim.TotalSim.logThisMessage(testModule.nodeDataOutMsgName, testProcessRate)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
drawData = unitTestSim.pullMessageLogData(testModule.nodeDataOutMsgName + ".baudRate")
# compare the module results to the truth values
accuracy = 1e-16
trueData = 0.0 #Module should be off
testFailCount, testMessages = unitTestSupport.compareDoubleArray(
[trueData]*3, drawData, accuracy, "transmitterStatusTest",
testFailCount, testMessages)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-alone python script
#
if __name__ == "__main__":
test_module()