''' '''
'''
ISC License
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
#
# Unit Test Script
# Module Name: rwMotorTorque
# Author: Hanspeter Schaub
# Creation Date: July 4, 2016
#
import pytest
import sys, os, inspect
import numpy as np
# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport
from Basilisk.fswAlgorithms.rwMotorTorque import rwMotorTorque
from Basilisk.utilities import macros
from Basilisk.simulation.simFswInterfaceMessages import simFswInterfaceMessages
from Support import results_rwMotorTorque
# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test.
[docs]@pytest.mark.parametrize("numControlAxes", [0, 1, 2, 3])
@pytest.mark.parametrize("numWheels", [2, 4, simFswInterfaceMessages.MAX_EFF_CNT])
@pytest.mark.parametrize("RWAvailMsg",["NO", "ON", "OFF", "MIXED"])
# update "module" in this function name to reflect the module name
def test_rwMotorTorque(show_plots, numControlAxes, numWheels, RWAvailMsg):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = rwMotorTorqueTest(show_plots, numControlAxes, numWheels, RWAvailMsg)
assert testResults < 1, testMessage
def rwMotorTorqueTest(show_plots, numControlAxes, numWheels, RWAvailMsg):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# terminateSimulation() is needed if multiple unit test scripts are run
# that run a simulation for the test. This creates a fresh and
# consistent simulation environment for each test run.
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
moduleConfig = rwMotorTorque.rwMotorTorqueConfig()
moduleWrap = unitTestSim.setModelDataWrap(moduleConfig)
moduleWrap.ModelTag = "rwMotorTorque"
# Initialize the test module msg names
moduleConfig.outputDataName = "rwMotorTorqueOut"
moduleConfig.inputVehControlName = "LrRequested"
if RWAvailMsg is not "NO":
moduleConfig.rwAvailInMsgName = "rw_availability"
moduleConfig.rwParamsInMsgName = "rwa_config_data_parsed"
# Initialize module variables
if numControlAxes == 3:
controlAxes_B = [
1, 0, 0
, 0, 1, 0
, 0, 0, 1
]
elif numControlAxes == 2:
controlAxes_B = [
1,0,0
,0,1,0
]
elif numControlAxes == 1:
controlAxes_B = [
1, 0, 0
]
else:
controlAxes_B = []
moduleConfig.controlAxes_B = controlAxes_B
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
# attControl message
inputMessageData = rwMotorTorque.CmdTorqueBodyIntMsg() # Create a structure for the input message
inputMessageSize = inputMessageData.getStructSize()
unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.inputVehControlName,
inputMessageSize, 2) # number of buffers (leave at 2 as default)
requestedTorque = [1.0, -0.5, 0.7] # Set up a list as a 3-vector
inputMessageData.torqueRequestBody = requestedTorque # write torque request to input message
unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputVehControlName, inputMessageSize,
0, inputMessageData) # write data into the simulator
# wheelConfigData message
rwConfigParams = rwMotorTorque.RWArrayConfigFswMsg()
inputMessageSize = rwConfigParams.getStructSize()
unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.rwParamsInMsgName,
inputMessageSize, 2) # number of buffers (leave at 2 as default)
MAX_EFF_CNT = simFswInterfaceMessages.MAX_EFF_CNT
if numWheels == MAX_EFF_CNT:
rwConfigParams.GsMatrix_B = [
0.4835867893995201, 0.7025829597277155, 0.5220354411517549,
0.6274167231454653, 0.4634123147571517, 0.6257773422303058,
0.4927675437195689, 0.3909468277672152, 0.7773935462269635,
0.2791305379092009, 0.20278639222840245, 0.9385967301954065,
0.1742148051521812, 0.9353106472878886, 0.3079662233682429,
0.7408864742367625, 0.30733781515416325, 0.5971856492492805,
0.49166240509756476, 0.11024265612126483, 0.863779275153674,
0.08522980139648922, 0.5635691254043687, 0.8216603445736381,
0.5169183283391889, 0.6482094982986043, 0.5591242153068406,
0.5539478507672101, 0.4352935184619988, 0.7096910112262675,
0.08177103922211226, 0.7185493168899821, 0.6906521384470449,
0.5424303480563135, 0.8034905566669417, 0.24530031156636306,
0.6791649825098244, 0.25103926707369056, 0.6897203874901293,
0.6662787689368599, 0.6695372377111813, 0.32831766535181106,
0.28428078464167594, 0.5440295499812461, 0.7894404880867942,
0.8881073966834958, 0.007176386091829566, 0.4595799728433832,
0.7043700914244455, 0.20398698108861654, 0.6798912308987893,
0.5913513581668906, 0.7154722881784563, 0.3720255045596441,
0.5353927164036736, 0.8292977052562882, 0.1600623480977027,
0.5626385603464779, 0.5530980227747188, 0.6144269099038059,
0.8047402627946283, 0.5179828986694456, 0.2899772855298006,
0.6435726414836709, 0.49863310510036174, 0.5806714059015666,
0.2533767502100278, 0.8066673674024603, 0.533936307831739,
0.051675625147813466, 0.741898369799065, 0.6685180914942186,
0.6705007071467579, 0.243658731626882, 0.700756180292173,
0.6124322825812726, 0.6044312394389204, 0.5094993386086216,
0.5025822950964116, 0.49662160344788164, 0.7076567103083798,
0.4875326918964735, 0.8575174427431412, 0.16424283766253403,
0.3659744927810267, 0.8415919620749859, 0.39722240622155974,
0.6205921515961875, 0.5508152351685801, 0.5580931446303532,
0.20125257120061574, 0.7022636474963218, 0.6828785924235018,
0.4318909377763495, 0.6786025351852008, 0.5941117883924572,
0.6839787443692367, 0.6598940110591041, 0.31098709204629277,
0.35743175000357147, 0.8343049491885353, 0.4197353878920623,
0.8124751056450826, 0.35669421673672336, 0.46114362020262967,
0.04721328350343224, 0.8901899787392832, 0.45313652204714083]
else:
rwConfigParams.GsMatrix_B = [
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0,
0.5773502691896258, 0.5773502691896258, 0.5773502691896258
]
rwConfigParams.JsList = [0.1]*numWheels
rwConfigParams.numRW = numWheels
unitTestSim.TotalSim.WriteMessageData(moduleConfig.rwParamsInMsgName, inputMessageSize,
0, rwConfigParams)
# wheelAvailability message
def writeMsgInWheelAvailability(numWheels):
rwAvailabilityMessage = rwMotorTorque.RWAvailabilityFswMsg()
avail = [rwMotorTorque.UNAVAILABLE] * numWheels
for i in range(numWheels):
if RWAvailMsg is "ON":
avail[i] = rwMotorTorque.AVAILABLE
elif RWAvailMsg is "OFF":
avail[i] = rwMotorTorque.UNAVAILABLE
else:
if i < int(numWheels/2):
avail[i] = rwMotorTorque.AVAILABLE
rwAvailabilityMessage.wheelAvailability = avail
unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName,
moduleConfig.rwAvailInMsgName,
rwAvailabilityMessage)
return avail
if len(moduleConfig.rwAvailInMsgName)>0:
avail = writeMsgInWheelAvailability(numWheels)
else:
avail = [rwMotorTorque.AVAILABLE]*numWheels # this is used purely for the python level solution
# Setup logging on the test module output message so that we get all the writes to it
unitTestSim.TotalSim.logThisMessage(moduleConfig.outputDataName, testProcessRate)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
moduleWrap.Reset(0)
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(0.5)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
moduleOutputName = "motorTorque"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName,
list(range(MAX_EFF_CNT)))
trueVector = np.array([
[0.0] * MAX_EFF_CNT,
[0.0] * MAX_EFF_CNT
])
# set the output truth states
trueVector[0] = results_rwMotorTorque.computeTorqueU(np.array(controlAxes_B),
np.array(rwConfigParams.GsMatrix_B).reshape((
3, MAX_EFF_CNT), order='F'),
requestedTorque,
avail)
trueVector[1] = trueVector[0]
# compare the module results to the truth values
accuracy = 1e-8
testFailCount, testMessages = unitTestSupport.compareArrayND(trueVector, moduleOutput, accuracy, "rwMotorTorques",
MAX_EFF_CNT, testFailCount, testMessages)
GsMatrix = np.transpose(np.reshape(rwConfigParams.GsMatrix_B,(MAX_EFF_CNT,3),"C"))
F = np.transpose(moduleOutput[0,1:MAX_EFF_CNT+1])
receivedTorque = -1.0*np.array([np.matmul(GsMatrix,F)])
receivedTorque = np.append(np.array([0.0]), receivedTorque)
if numWheels >= numControlAxes and numControlAxes > 0:
if (len(avail) - np.sum(avail)) > numControlAxes:
testFailCount, testMessages = unitTestSupport.compareArrayND(np.array([requestedTorque]), np.array([receivedTorque]), accuracy, "CompareTorques",
numControlAxes, testFailCount, testMessages)
snippetName = "LrBReq_LrBRec_"+str(numControlAxes) + "_" + str(numWheels) + "_" + RWAvailMsg
requestedTex = str(requestedTorque)
receivedTex = str(receivedTorque[1:4])
snippetTex = "Requested:\t" + requestedTex + "\n"
snippetTex += "Received:\t" + receivedTex + "\n"
unitTestSupport.writeTeXSnippet(snippetName, snippetTex, path)
# print out success message if no error were found
unitTestSupport.writeTeXSnippet('toleranceValue', str(accuracy), path)
snippentName = "passFail_"+str(numControlAxes) + str(numWheels) + RWAvailMsg
if testFailCount == 0:
colorText = 'ForestGreen'
print("PASSED: " + moduleWrap.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = 'Red'
print("Failed: " + moduleWrap.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_rwMotorTorque(False,
2, # numControlAxes
2, # numWheels
"ON" # RWAvailMsg ("NO", "ON", "OFF")
)