''' '''
'''
ISC License
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
import sys, os, inspect
import numpy as np
import pytest
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
import matplotlib.pyplot as plt
from Basilisk.fswAlgorithms.rateServoFullNonlinear import rateServoFullNonlinear # import the module that is to be tested
from Basilisk.utilities import macros
from Basilisk.fswAlgorithms.fswMessages import fswMessages
from Basilisk.simulation.simFswInterfaceMessages import simFswInterfaceMessages
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_
[docs]@pytest.mark.parametrize("rwNum", [4, 0])
@pytest.mark.parametrize("intGain", [0.01, -1])
@pytest.mark.parametrize("omegap_BastR_B", [(1.87766650e-04, -3.91233583e-05, 3.56369489e-05), (0, 0, 0)])
@pytest.mark.parametrize("omega_BastR_B", [(-2.23886891e-02, 2.47942516e-02, -2.55601849e-02), (0, 0, 0)])
@pytest.mark.parametrize("integralLimit", [0, 20])
@pytest.mark.parametrize("useRwAvailability", ["NO", "ON", "OFF"])
def test_rate_servo_full_nonlinear(show_plots, rwNum, intGain, omegap_BastR_B, omega_BastR_B, integralLimit,
useRwAvailability):
"""Module Unit Test"""
[testResults, testMessage] = rate_servo_full_nonlinear(show_plots, rwNum, intGain, omegap_BastR_B, omega_BastR_B,
integralLimit, useRwAvailability)
assert testResults < 1, testMessage
def rate_servo_full_nonlinear(show_plots,rwNum, intGain, omegap_BastR_B, omega_BastR_B, integralLimit,
useRwAvailability):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
#__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
moduleConfig = rateServoFullNonlinear.rateServoFullNonlinearConfig()
moduleWrap = unitTestSim.setModelDataWrap(moduleConfig)
moduleWrap.ModelTag = "rate_servo"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
# Initialize the test module configuration data
moduleConfig.inputGuidName = "inputGuidName"
moduleConfig.vehConfigInMsgName = "vehicleConfigName"
moduleConfig.rwParamsInMsgName = "rwa_config_data_parsed"
moduleConfig.rwAvailInMsgName = "rw_availability"
moduleConfig.inputRWSpeedsName = "reactionwheel_speeds"
moduleConfig.inputRateSteeringName = "rate_steering"
moduleConfig.outputDataName = "outputName"
moduleConfig.Ki = intGain
moduleConfig.P = 150.0
moduleConfig.integralLimit = integralLimit
moduleConfig.knownTorquePntB_B = (1,1,1)
# Create input message and size it because the regular creator of that message
# is not part of the test.
# attGuidOut Message:
guidCmdData = fswMessages.AttGuidFswMsg() # Create a structure for the input message
inputMessageSize = guidCmdData.getStructSize()
unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.inputGuidName,
inputMessageSize, 2)# number of buffers (leave at 2 as default, don't make zero)
sigma_BR = np.array([0.3, -0.5, 0.7])
guidCmdData.sigma_BR = sigma_BR
omega_BR_B = np.array([0.010, -0.020, 0.015])
guidCmdData.omega_BR_B = omega_BR_B
omega_RN_B = np.array([-0.02, -0.01, 0.005])
guidCmdData.omega_RN_B = omega_RN_B
domega_RN_B = np.array([0.0002, 0.0003, 0.0001])
guidCmdData.domega_RN_B = domega_RN_B
unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputGuidName, inputMessageSize,
0, guidCmdData)
# vehicleConfigData Message:
vehicleConfigOut = fswMessages.VehicleConfigFswMsg()
inputMessageSize = vehicleConfigOut.getStructSize() # 18 doubles + 1 32bit integer
unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.vehConfigInMsgName,
inputMessageSize, 2) # number of buffers (leave at 2 as default, don't make zero)
I = [1000., 0., 0.,
0., 800., 0.,
0., 0., 800.]
vehicleConfigOut.ISCPntB_B = I
unitTestSim.TotalSim.WriteMessageData(moduleConfig.vehConfigInMsgName,
inputMessageSize,
0, vehicleConfigOut)
# wheelSpeeds Message
rwSpeedMessage = simFswInterfaceMessages.RWSpeedIntMsg()
inputMessageSize = rwSpeedMessage.getStructSize()
unitTestSim.TotalSim.CreateNewMessage(unitProcessName,
moduleConfig.inputRWSpeedsName,
inputMessageSize,
2) # number of buffers (leave at 2 as default, don't make zero)
Omega = [10.0, 25.0, 50.0, 100.0]
rwSpeedMessage.wheelSpeeds = Omega
unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputRWSpeedsName,
inputMessageSize,
0,
rwSpeedMessage)
# wheelConfigData message
jsList = []
GsMatrix_B = []
def writeMsgInWheelConfiguration():
rwConfigParams = fswMessages.RWArrayConfigFswMsg()
inputMessageSize = rwConfigParams.getStructSize()
unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.rwParamsInMsgName,
inputMessageSize, 2) # number of buffers (leave at 2 as default)
rwConfigParams.GsMatrix_B = [
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0,
0.5773502691896258, 0.5773502691896258, 0.5773502691896258
]
rwConfigParams.JsList = [0.1, 0.1, 0.1, 0.1]
rwConfigParams.numRW = rwNum
unitTestSim.TotalSim.WriteMessageData(moduleConfig.rwParamsInMsgName, inputMessageSize,
0, rwConfigParams)
jsList = rwConfigParams.JsList
GsMatrix_B = rwConfigParams.GsMatrix_B
return jsList, GsMatrix_B
if len(moduleConfig.rwParamsInMsgName) > 0:
jsList, GsMatrix_B = writeMsgInWheelConfiguration()
# wheelAvailability message
rwAvailabilityMessage = fswMessages.RWAvailabilityFswMsg()
if useRwAvailability is not "NO":
moduleConfig.rwAvailInMsgName = "rw_availability"
if useRwAvailability is "ON":
rwAvailabilityMessage.wheelAvailability = [rateServoFullNonlinear.AVAILABLE, rateServoFullNonlinear.AVAILABLE,
rateServoFullNonlinear.AVAILABLE, rateServoFullNonlinear.AVAILABLE]
elif useRwAvailability is "OFF":
rwAvailabilityMessage.wheelAvailability = [rateServoFullNonlinear.UNAVAILABLE, rateServoFullNonlinear.UNAVAILABLE,
rateServoFullNonlinear.UNAVAILABLE, rateServoFullNonlinear.UNAVAILABLE]
else:
print("WARNING: unknown rw availability status")
unitTestSupport.setMessage(unitTestSim.TotalSim,
unitProcessName,
moduleConfig.rwAvailInMsgName,
rwAvailabilityMessage)
else:
# set default availability
rwAvailabilityMessage.wheelAvailability = [rateServoFullNonlinear.AVAILABLE, rateServoFullNonlinear.AVAILABLE,
rateServoFullNonlinear.AVAILABLE, rateServoFullNonlinear.AVAILABLE]
# rateSteering message
rateSteeringMsg = fswMessages.RateCmdFswMsg()
inputMessageSize = rateSteeringMsg.getStructSize()
unitTestSim.TotalSim.CreateNewMessage(unitProcessName,
moduleConfig.inputRateSteeringName,
inputMessageSize,
2) # number of buffers (leave at 2 as default, don't make zero)
rateSteeringMsg.omega_BastR_B = omega_BastR_B
rateSteeringMsg.omegap_BastR_B = omegap_BastR_B
unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputRateSteeringName,
inputMessageSize,
0,
rateSteeringMsg)
# Setup logging on the test module output message so that we get all the writes to it
unitTestSim.TotalSim.logThisMessage(moduleConfig.outputDataName, testProcessRate)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Step the simulation to 3*process rate so 4 total steps including zero
unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
moduleWrap.Reset(1) # this module reset function needs a time input (in NanoSeconds)
unitTestSim.ConfigureStopTime(macros.sec2nano(2.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
moduleOutputName = "torqueRequestBody"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName,
list(range(3)))
# set the filtered output truth states
LrTrue = findTrueTorques(moduleConfig, guidCmdData, rwSpeedMessage, vehicleConfigOut, jsList,
rwNum, GsMatrix_B, rwAvailabilityMessage,rateSteeringMsg)
# compare the module results to the truth values
accuracy = 1e-8
for i in range(0, len(LrTrue)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i], LrTrue[i], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " + moduleOutputName +
" unit test at t=" + str(moduleOutput[i, 0] * macros.NANO2SEC) +
"sec \n")
# If the argument provided at commandline "--show_plots" evaluates as true,
# plot all figures
if show_plots:
plt.show()
# print out success message if no error were found
if testFailCount == 0:
print("PASSED: " + moduleWrap.ModelTag)
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
def findTrueTorques(moduleConfig,guidCmdData,rwSpeedMessage,vehicleConfigOut,jsList,numRW,GsMatrix_B,rwAvailMsg,rateSteeringMsg ):
Lr = []
#Read in variables
L = np.asarray(moduleConfig.knownTorquePntB_B)
steps = [0, 0, .5, 0, .5]
omega_BR_B = np.asarray(guidCmdData.omega_BR_B)
omega_RN_B = np.asarray(guidCmdData.omega_RN_B)
omega_BN_B = omega_BR_B + omega_RN_B #find body rate
domega_RN_B = np.asarray(guidCmdData.domega_RN_B)
omega_BastR_B = np.asarray(rateSteeringMsg.omega_BastR_B)
omegap_BastR_B = np.asarray(rateSteeringMsg.omegap_BastR_B) #body-frame derivative of omega_BastR_B
omega_BastN_B = omega_BastR_B+omega_RN_B
omega_BBast_B = omega_BN_B - omega_BastN_B
Isc = np.asarray(vehicleConfigOut.ISCPntB_B)
Isc = np.reshape(Isc, (3, 3))
Ki = moduleConfig.Ki
P = moduleConfig.P
jsVec = jsList
GsMatrix_B_array = np.asarray(GsMatrix_B)
GsMatrix_B_array = np.reshape(GsMatrix_B_array[0:numRW * 3], (numRW, 3))
#Compute toruqes
for i in range(len(steps)):
dt = steps[i]
if dt == 0:
zVec = np.asarray([0, 0, 0])
#evaluate integral term
if Ki > 0 and abs(moduleConfig.integralLimit) > 0: #if integral feedback is on
zVec = dt * omega_BBast_B + zVec # z = integral(del_omega)
# Make sure each component is less than the integral limit
for i in range(3):
if zVec[i] > moduleConfig.integralLimit:
zVec[i] = zVec[i]/abs(zVec[i])*moduleConfig.integralLimit
else: #integral gain turned off/negative setting
zVec = np.asarray([0, 0, 0])
#compute torque Lr
Lr0 = Ki * zVec # +K*sigmaBR
Lr1 = Lr0 + P * omega_BBast_B # +P*deltaOmega
GsHs = np.array([0,0,0])
if numRW > 0:
for i in range(numRW):
if rwAvailMsg.wheelAvailability[i] == 0: # Make RW availability check
GsHs = GsHs + np.dot(GsMatrix_B_array[i, :], jsVec[i]*(np.dot(omega_BN_B, GsMatrix_B_array[i, :]) + rwSpeedMessage.wheelSpeeds[i]))
# J_s*(dot(omegaBN_B,Gs_vec)+Omega_wheel)
Lr2 = Lr1 - np.cross(omega_BastN_B, (Isc.dot(omega_BN_B)+GsHs)) # - omega_BastN x ([I]omega + [Gs]h_s)
Lr3 = Lr2 - Isc.dot(omegap_BastR_B + domega_RN_B - np.cross(omega_BN_B, omega_RN_B))
# - [I](d(omega_B^ast/R)/dt + d(omega_r)/dt - omega x omega_r)
Lr4 = Lr3 + L
Lr4 = -Lr4
Lr.append(np.ndarray.tolist(Lr4))
return Lr
if __name__ == "__main__":
test_rate_servo_full_nonlinear(False, #show plots T/F
4, # Number of RW
0.01, # Integral Gain
(0,0,0), # omegap_BastR_B
(0,0,0), # omega_BastR_B
20, # integraLimit
"ON") # useRwAvailability