''' '''
'''
ISC License
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
#
# RadiationPressure Unit Test
#
# Purpose: Test the proper function of the Radiation Pressure Dynamics module.
# This is done by comparing expected torques and forces to
# what is simulated
# Author: Patrick Kenneally
# Creation Date: Feb. 9, 2017
#
# @cond DOXYGEN_IGNORE
import sys
import os
import numpy as np
import pytest
import inspect
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
splitPath = path.split('simulation')
# @endcond
#Import all of the modules that we are going to call in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport
from Basilisk.simulation import spacecraftPlus
from Basilisk.simulation import radiation_pressure
from Basilisk.utilities import macros
from Basilisk.simulation import spice_interface
from Basilisk.utilities import orbitalMotion as om
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(True)
[docs]@pytest.mark.parametrize("modelType, eclipseOn", [
("cannonball",False)
, ("lookup", False)
, ("lookup", True)
, ("cannonballLookup", False)
])
def test_unitRadiationPressure(show_plots, modelType, eclipseOn):
"""Module Unit Test"""
[testResults, testMessage] = unitRadiationPressure(show_plots, modelType, eclipseOn)
assert testResults < 1, testMessage
def unitRadiationPressure(show_plots, modelType, eclipseOn):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0
testMessages = []
testTaskName = "unitTestTask"
testProcessName = "unitTestProcess"
testTaskRate = macros.sec2nano(0.1)
simulationTime = 0.2
r_N = [-16937711153.5, -138435806556.0, -60051616256.6] # [m]
sun_r_N = [507128401.716, 22652490.9092, -14854379.6232] # [m]
sigma_BN = [0.1, 0.2, -0.3]
# Create a simulation container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Ensure simulation is empty
testProc = unitTestSim.CreateNewProcess(testProcessName)
testProc.addTask(unitTestSim.CreateNewTask(testTaskName, testTaskRate))
srpDynEffector = radiation_pressure.RadiationPressure()
srpDynEffector.ModelTag = "RadiationPressure"
srpDynEffector2 = radiation_pressure.RadiationPressure()
srpDynEffector2.ModelTag = "RadiationPressure2"
if modelType == "cannonball":
srpDynEffector.setUseCannonballModel()
srpDynEffector.area = 4
srpDynEffector.coefficientReflection = 1.2
elif modelType == "lookup":
srpDynEffector.setUseFacetedCPUModel()
handler = radiation_pressure.SRPLookupTableHandler()
handler.parseAndLoadXML(os.path.dirname(__file__) + "/cube_lookup.xml")
for i in range(0, len(handler.forceBLookup)):
srpDynEffector.addForceLookupBEntry(unitTestSupport.np2EigenVectorXd(handler.forceBLookup[i, :]))
srpDynEffector.addTorqueLookupBEntry(unitTestSupport.np2EigenVectorXd(handler.torqueBLookup[i, :]))
srpDynEffector.addSHatLookupBEntry(unitTestSupport.np2EigenVectorXd(handler.sHatBLookup[i, :]))
elif modelType == "cannonballLookup":
srpDynEffector.setUseFacetedCPUModel()
handler = radiation_pressure.SRPLookupTableHandler()
handler.parseAndLoadXML(os.path.dirname(__file__) + "/cannonballLookup.xml")
for i in range(0, len(handler.forceBLookup)):
srpDynEffector.addForceLookupBEntry(unitTestSupport.np2EigenVectorXd(handler.forceBLookup[i, :]))
srpDynEffector.addTorqueLookupBEntry(unitTestSupport.np2EigenVectorXd(handler.torqueBLookup[i, :]))
srpDynEffector.addSHatLookupBEntry(unitTestSupport.np2EigenVectorXd(handler.sHatBLookup[i, :]))
srpDynEffector2.setUseCannonballModel()
srpDynEffector2.area = 182018.072141393 #set to give a force of 1N at 1AU to make spherical table generation easy
srpDynEffector2.coefficientReflection = 1.2
r_N = [np.sin(np.pi/4.)*np.cos(np.pi/4.)*10.*om.AU*1000., np.sin(np.pi/4.)*np.sin(np.pi/4.)*10.*om.AU*1000., np.cos(np.pi/4.)*10.*om.AU*1000.] # [m]
sun_r_N = [0., 0., 0.] # [m]
sigma_BN = [0., 0., 0.]
if eclipseOn:
sunEclipseInMsgName = "sun_eclipse"
sunEclipseMsgData = radiation_pressure.EclipseSimMsg()
sunEclipseMsgData.shadowFactor = 0.5
unitTestSupport.setMessage(unitTestSim.TotalSim, testProcessName, sunEclipseInMsgName, sunEclipseMsgData)
srpDynEffector.sunEclipseInMsgName = sunEclipseInMsgName
srpDynEffector2.sunEclipseInMsgName = sunEclipseInMsgName
unitTestSim.AddModelToTask(testTaskName, srpDynEffector, None, 3)
unitTestSim.AddModelToTask(testTaskName, srpDynEffector2, None, 3)
scPlusStateMsg = spacecraftPlus.SCPlusStatesSimMsg()
scPlusStateMsgName = "inertial_state_output"
unitTestSim.TotalSim.CreateNewMessage(testProcessName, scPlusStateMsgName, scPlusStateMsg.getStructSize(), 2)
scPlusStateMsg.r_BN_N = r_N
scPlusStateMsg.sigma_BN = sigma_BN
unitTestSim.TotalSim.WriteMessageData(scPlusStateMsgName, scPlusStateMsg.getStructSize(), 1, scPlusStateMsg)
sunSpiceMsg = spice_interface.SpicePlanetStateSimMsg()
sunSpiceMsgName = "sun_planet_data"
unitTestSim.TotalSim.CreateNewMessage(testProcessName, sunSpiceMsgName, sunSpiceMsg.getStructSize(), 2)
sunSpiceMsg.PositionVector = sun_r_N
unitTestSim.TotalSim.WriteMessageData(sunSpiceMsgName, sunSpiceMsg.getStructSize(), 1, sunSpiceMsg)
unitTestSim.AddVariableForLogging(srpDynEffector.ModelTag + ".forceExternal_B",
simulationTime, 0, 2, 'double')
unitTestSim.AddVariableForLogging(srpDynEffector.ModelTag + ".forceExternal_N",
simulationTime, 0, 2, 'double')
unitTestSim.AddVariableForLogging(srpDynEffector.ModelTag + ".torqueExternalPntB_B",
simulationTime, 0, 2, 'double')
unitTestSim.AddVariableForLogging(srpDynEffector2.ModelTag + ".forceExternal_B",
simulationTime, 0, 2, 'double')
unitTestSim.AddVariableForLogging(srpDynEffector2.ModelTag + ".forceExternal_N",
simulationTime, 0, 2, 'double')
unitTestSim.AddVariableForLogging(srpDynEffector2.ModelTag + ".torqueExternalPntB_B",
simulationTime, 0, 2, 'double')
unitTestSim.InitializeSimulation()
# Configure a simulation stop time time and execute the simulation run
unitTestSim.ConfigureStopTime(simulationTime)
unitTestSim.ExecuteSimulation()
srpDynEffector.computeForceTorque(unitTestSim.TotalSim.CurrentNanos)
srpDynEffector2.computeForceTorque(unitTestSim.TotalSim.CurrentNanos)
unitTestSim.TotalSim.SingleStepProcesses()
unitTestSim.RecordLogVars()
srpDataForce_B = unitTestSim.GetLogVariableData(srpDynEffector.ModelTag + ".forceExternal_B")
srpDataForce_N = unitTestSim.GetLogVariableData(srpDynEffector.ModelTag + ".forceExternal_N")
srpTorqueData = unitTestSim.GetLogVariableData(srpDynEffector.ModelTag + ".torqueExternalPntB_B")
srp2DataForce_B = unitTestSim.GetLogVariableData(srpDynEffector2.ModelTag + ".forceExternal_B")
srp2DataForce_N = unitTestSim.GetLogVariableData(srpDynEffector2.ModelTag + ".forceExternal_N")
srp2TorqueData = unitTestSim.GetLogVariableData(srpDynEffector2.ModelTag + ".torqueExternalPntB_B")
errTol = 1E-12
if modelType == "cannonball":
truthForceExternal_B = [0, 0, 0]
truthForceExternal_N = [-2.44694525395e-06, -1.94212316004e-05, -8.42121070088e-06]
truthTorqueExternalPntB_B = [0, 0, 0]
testFailCount, testMessages = unitTestSupport.compareVector(truthForceExternal_B,
srpDataForce_B[1,1:],
errTol,
"Force_B",
testFailCount,
testMessages)
testFailCount, testMessages = unitTestSupport.compareVector(truthForceExternal_N,
srpDataForce_N[1, 1:],
errTol,
"Force_N",
testFailCount,
testMessages)
testFailCount, testMessages = unitTestSupport.compareVector(truthTorqueExternalPntB_B,
srpTorqueData[1, 1:],
errTol,
"Torque",
testFailCount,
testMessages)
if modelType == "lookup":
errTolTorque = errTol/100
truthForceExternal_B = [0.26720220706099184E-04, - 0.13596079145805012E-04, 0.93948649829282319E-05]
truthForceExternal_N = [0, 0, 0]
truthTorqueExternalPntB_B = [-0.80492463017846114E-12, 0.50888380426172319E-12, 0.10249431804585393E-11]
if eclipseOn:
truthForceExternal_B = sunEclipseMsgData.shadowFactor*np.array(truthForceExternal_B)
truthTorqueExternalPntB_B = sunEclipseMsgData.shadowFactor * np.array(truthTorqueExternalPntB_B)
testFailCount, testMessages = unitTestSupport.compareVector(truthForceExternal_B,
srpDataForce_B[1, 1:],
errTol,
"Force_B",
testFailCount,
testMessages)
testFailCount, testMessages = unitTestSupport.compareVector(truthForceExternal_N,
srpDataForce_N[1, 1:],
errTol,
"Force_N",
testFailCount,
testMessages)
testFailCount, testMessages = unitTestSupport.compareVector(truthTorqueExternalPntB_B,
srpTorqueData[1, 1:],
errTolTorque,
"Torque",
testFailCount,
testMessages)
if modelType == "cannonballLookup":
errTolTorque = errTol/100
testFailCount, testMessages = unitTestSupport.compareVector(srp2DataForce_N[1, 1:],
srpDataForce_B[1, 1:],
errTol,
"Force_B",
testFailCount,
testMessages)
testFailCount, testMessages = unitTestSupport.compareVector(srp2DataForce_B[1, 1:],
srpDataForce_N[1, 1:],
errTol,
"Force_N",
testFailCount,
testMessages)
testFailCount, testMessages = unitTestSupport.compareVector(srp2TorqueData[1, 1:],
srpTorqueData[1, 1:],
errTolTorque,
"Torque",
testFailCount,
testMessages)
if eclipseOn:
modelType = modelType + 'WithEclipse' #Do this so that the AutoTeX messages are clearly distinguishable.
if testFailCount == 0:
print("PASSED: " + modelType)
passFailText = "PASSED"
colorText = 'ForestGreen' # color to write auto-documented "PASSED" message in in LATEX
snippetName = modelType + 'FailMsg'
snippetContent = ""
unitTestSupport.writeTeXSnippet(snippetName, snippetContent, path) # write formatted LATEX string to file to be used by auto-documentation.
else:
passFailText = 'FAILED'
colorText = 'Red' # color to write auto-documented "FAILED" message in in LATEX
snippetName = modelType + 'FailMsg'
snippetContent = passFailText
for message in testMessages:
snippetContent += ". " + message
snippetContent += "."
unitTestSupport.writeTeXSnippet(snippetName, snippetContent, path) # write formatted LATEX string to file to be used by auto-documentation.
snippetName = modelType + 'PassFail' # name of file to be written for auto-documentation which specifies if this test was passed or failed.
snippetContent = r'\textcolor{' + colorText + '}{' + passFailText + '}' #write formatted LATEX string to file to be used by auto-documentation.
unitTestSupport.writeTeXSnippet(snippetName, snippetContent, path) #write formatted LATEX string to file to be used by auto-documentation.
# write test accuracy to LATEX file for AutoTex
snippetName = modelType + 'Accuracy'
snippetContent = '{:1.1e}'.format(errTol)#write formatted LATEX string to file to be used by auto-documentation.
unitTestSupport.writeTeXSnippet(snippetName, snippetContent, path) #write formatted LATEX string to file to be used by auto-documentation.
if modelType == 'lookupWithEclipse' or modelType == 'lookup' or modelType == 'cannonballLookup':
snippetName = modelType + 'TorqueAccuracy'
snippetContent = '{:1.1e}'.format(errTolTorque) # write formatted LATEX string to file to be used by auto-documentation.
unitTestSupport.writeTeXSnippet(snippetName, snippetContent,
path) # write formatted LATEX string to file to be used by auto-documentation.
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
if __name__ == "__main__":
unitRadiationPressure(False, "cannonball", False)