''' '''
'''
ISC License
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
#
# Unit Test Script
# Module Name: planetEphemeris
# Author: Hanspeter Schaub
# Creation Date: April 24, 2019
#
import pytest
import os, inspect
import numpy as np
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
bskName = 'Basilisk'
splitPath = path.split(bskName)
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import orbitalMotion
from Basilisk.utilities import RigidBodyKinematics as rbk
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.simulation import planetEphemeris
from Basilisk.utilities import macros
# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test.
[docs]@pytest.mark.parametrize("setRAN", [ True, False])
@pytest.mark.parametrize("setDEC", [ True, False])
@pytest.mark.parametrize("setLST", [ True, False])
@pytest.mark.parametrize("setRate", [ True, False])
# update "module" in this function name to reflect the module name
def test_module(show_plots, setRAN, setDEC, setLST, setRate):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = fswModuleTestFunction(show_plots, setRAN, setDEC, setLST, setRate)
assert testResults < 1, testMessage
def fswModuleTestFunction(show_plots, setRAN, setDEC, setLST, setRate):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# terminateSimulation() is needed if multiple unit test scripts are run
# that run a simulation for the test. This creates a fresh and
# consistent simulation environment for each test run.
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
moduleConfig = planetEphemeris.PlanetEphemeris()
moduleConfig.ModelTag = 'planetEphemeris'
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, moduleConfig)
# Initialize the test module configuration data
planetNames = ["earth", "venus"]
moduleConfig.planetNames = planetEphemeris.StringVector(planetNames)
# set gravitational constant of the sun
mu = orbitalMotion.MU_SUN*1000.*1000.*1000 # m^3/s^2
# setup planet ephemeris states
oeEarth = planetEphemeris.classicElements()
oeEarth.a = planetEphemeris.SMA_EARTH*1000 # meters
oeEarth.e = 0.001
oeEarth.i = 10.0*macros.D2R
oeEarth.Omega = 30.0*macros.D2R
oeEarth.omega = 20.0*macros.D2R
oeEarth.f = 90.0*macros.D2R
oeVenus = planetEphemeris.classicElements()
oeVenus.a = planetEphemeris.SMA_VENUS*1000 # meters
oeVenus.e = 0.001
oeVenus.i = 5.0*macros.D2R
oeVenus.Omega = 110.0*macros.D2R
oeVenus.omega = 220.0*macros.D2R
oeVenus.f = 180.0*macros.D2R
moduleConfig.planetElements = planetEphemeris.classicElementVector([oeEarth, oeVenus])
evalAttitude = 1
if setRAN:
# setup planet local right ascension angle at epoch
RANlist = [0.*macros.D2R, 272.76*macros.D2R]
moduleConfig.rightAscension = planetEphemeris.DoubleVector(RANlist)
else:
evalAttitude = 0
if setDEC:
# setup planet local declination angle at epoch
DEClist = [90.*macros.D2R, 67.16*macros.D2R]
moduleConfig.declination = planetEphemeris.DoubleVector(DEClist)
else:
evalAttitude = 0
if setLST:
# setup planet local sidereal time at epoch
lstList = [10.*macros.D2R, 30.*macros.D2R]
moduleConfig.lst0 = planetEphemeris.DoubleVector(lstList)
else:
evalAttitude = 0
if setRate:
# setup planet rotation rate about polar axis
omegaList = [planetEphemeris.OMEGA_EARTH, planetEphemeris.OMEGA_VENUS]
moduleConfig.rotRate = planetEphemeris.DoubleVector(omegaList)
else:
evalAttitude = 0
# Setup logging on the test module output message so that we get all the writes to it
for planet in planetNames:
unitTestSim.TotalSim.logThisMessage(planet + "_planet_data", testProcessRate)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
accuracy = 1e-3
unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path)
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
c = 0
for planet in planetNames:
J2000Current = unitTestSim.pullMessageLogData(planet + '_planet_data.J2000Current')
PositionVector = unitTestSim.pullMessageLogData(planet + '_planet_data.PositionVector', list(range(3)))
VelocityVector = unitTestSim.pullMessageLogData(planet + '_planet_data.VelocityVector', list(range(3)))
J20002Pfix = unitTestSim.pullMessageLogData(planet + '_planet_data.J20002Pfix', list(range(9)))
J20002Pfix_dot = unitTestSim.pullMessageLogData(planet + '_planet_data.J20002Pfix_dot', list(range(9)))
computeOrient = unitTestSim.pullMessageLogData(planet + '_planet_data.computeOrient')
# check that the proper planet name string is set
FinalPlanetMessage = planetEphemeris.SpicePlanetStateSimMsg()
unitTestSim.TotalSim.GetWriteData(planet + '_planet_data', FinalPlanetMessage.getStructSize(), FinalPlanetMessage, 0)
if planet != FinalPlanetMessage.PlanetName:
testFailCount += 1
testMessages.append("FAILED: planetEphemeris() didn't set the desired plane name " + planet)
# check that the time information is correct
timeTrue = [[0.0], [0.5], [1.0]]
testFailCount, testMessages = unitTestSupport.compareDoubleArray(
timeTrue, J2000Current, accuracy, "J2000Current", testFailCount, testMessages)
# check that the position and velocity vectors are correct
if planet is "earth":
oe = oeEarth
else:
oe = oeVenus
f0 = oe.f
E0 = orbitalMotion.f2E(f0, oe.e)
M0 = orbitalMotion.E2M(E0, oe.e)
rTrue = []
vTrue = []
for time in timeTrue:
Mt = M0 + np.sqrt(mu/oe.a/oe.a/oe.a)*time[0]
Et = orbitalMotion.M2E(Mt, oe.e)
oe.f = orbitalMotion.E2f(Et, oe.e)
rv, vv = orbitalMotion.elem2rv(mu, oe)
rTrue.append(rv)
vTrue.append(vv)
testFailCount, testMessages = unitTestSupport.compareArray(rTrue, PositionVector,
accuracy, "Position Vector",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareArray(vTrue, VelocityVector,
accuracy, "Velocity Vector",
testFailCount, testMessages)
# check if the planet DCM and DCM rate is correct
dcmTrue = []
dcmRateTrue = []
if evalAttitude:
RAN = RANlist[c]
DEC = DEClist[c]
lst0 = lstList[c]
eHat_N = np.array([np.cos(DEC)*np.cos(RAN), np.cos(DEC)*np.sin(RAN), np.sin(DEC)])
omega_NP_P = np.array([0.0, 0.0, -omegaList[c]])
tilde = rbk.v3Tilde(omega_NP_P)
for time in timeTrue:
lst = lst0 + omegaList[c]*time[0]
gamma = eHat_N*lst
DCM = rbk.PRV2C(gamma)
dcmTrue.append(np.ravel(DCM))
dDCMdt = np.matmul(tilde, DCM)
dcmRateTrue.append(np.ravel(dDCMdt))
else:
for time in timeTrue:
dcmTrue.append(np.ravel(np.identity(3)))
dcmRateTrue.append([0.0]*9)
testFailCount, testMessages = unitTestSupport.compareArrayND(dcmTrue, J20002Pfix,
accuracy, "DCM", 9,
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareArrayND(dcmRateTrue, J20002Pfix_dot,
1e-10, "DCM Rate", 9,
testFailCount, testMessages)
# check if the orientation evaluation flag is set correctly
flagTrue = [evalAttitude] * 3
testFailCount, testMessages = unitTestSupport.compareDoubleArray(
flagTrue, computeOrient, accuracy, "computeOrient", testFailCount, testMessages)
c = c+1
# print out success message if no error were found
snippentName = "passFail" + str(setRAN) + str(setDEC) + str(setLST) + str(setRate)
if testFailCount == 0:
colorText = 'ForestGreen'
print("PASSED: " + moduleConfig.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = 'Red'
print("Failed: " + moduleConfig.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_module(
False, # show plots flag
True, # setRAN
True, # setDEC
True, # setLST
True # setRate
)