''' '''
'''
ISC License
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
#
# Copy of the unit test for sunSafe Point adapted to any heading
# Module Name: opNavPoint
# Author: Thibaud Teil
# Creation Date: August 20, 2019
#
import pytest
import sys, os, inspect
import numpy as np
# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
import matplotlib.pyplot as plt
from Basilisk.fswAlgorithms.opNavPoint import opNavPoint # import the module that is to be tested
from Basilisk.fswAlgorithms.fswMessages import OpNavFswMsg
from Basilisk.simulation.simFswInterfaceMessages import simFswInterfaceMessages
from Basilisk.utilities import macros as mc
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
#@pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test.
[docs]@pytest.mark.parametrize("case", [
(1) # target is visible, vectors are not aligned
,(2) # target is not visible, vectors are not aligned
,(3) # target is visible, vectors are aligned
,(4) # target is not visible, search
])
def test_module(show_plots, case):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = opNavPointTestFunction(show_plots, case)
assert testResults < 1, testMessage
def opNavPointTestFunction(show_plots, case):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# terminateSimulation() is needed if multiple unit test scripts are run
# that run a simulation for the test. This creates a fresh and
# consistent simulation environment for each test run.
# Create test thread
testProcessRate = mc.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
moduleConfig = opNavPoint.OpNavPointConfig()
moduleWrap = unitTestSim.setModelDataWrap(moduleConfig)
moduleWrap.ModelTag = "opNavPoint"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
# Initialize the test module configuration data
moduleConfig.attGuidanceOutMsgName = "outputName"
moduleConfig.opnavDataInMsgName = "inputOpNavName"
moduleConfig.imuInMsgName = "inputIMUDataName"
moduleConfig.cameraConfigMsgName = "camera_config_data"
camera_Z = [0.,0.,1.]
moduleConfig.alignAxis_C = camera_Z
moduleConfig.minUnitMag = 0.01
moduleConfig.smallAngle = 0.01*mc.D2R
moduleConfig.timeOut = 100
# Create input messages
#
planet_B = [1.,1.,0.]
inputOpNavData = OpNavFswMsg() # Create a structure for the input message
inputOpNavData.r_BN_C = planet_B
inputOpNavData.valid = 1
if (case == 2): #No valid measurement
inputOpNavData.valid = 0
if (case == 3): #No valid measurement
inputOpNavData.r_BN_C = [0.,0.,-1.]
if (case == 4): #No valid measurement
inputOpNavData.valid = 0
unitTestSupport.setMessage(unitTestSim.TotalSim,
unitProcessName,
moduleConfig.opnavDataInMsgName,
inputOpNavData)
inputIMUData = simFswInterfaceMessages.NavAttIntMsg() # Create a structure for the input message
omega_BN_B = np.array([0.01, 0.50, -0.2])
inputIMUData.omega_BN_B = omega_BN_B
unitTestSupport.setMessage(unitTestSim.TotalSim,
unitProcessName,
moduleConfig.imuInMsgName,
inputIMUData)
omega_RN_B_Search = np.array([0.0, 0.0, 0.1])
if (case ==2 or case==4):
moduleConfig.omega_RN_B = omega_RN_B_Search
cam = simFswInterfaceMessages.CameraConfigMsg() # Create a structure for the input message
cam.sigma_CB = [0.,0.,0]
unitTestSupport.setMessage(unitTestSim.TotalSim,
unitProcessName,
moduleConfig.cameraConfigMsgName,
cam)
# Setup logging on the test module output message so that we get all the writes to it
unitTestSim.TotalSim.logThisMessage(moduleConfig.attGuidanceOutMsgName, testProcessRate)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
unitTestSim.ConfigureStopTime(mc.sec2nano(1.)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
#
# check sigma_BR
#
moduleOutputName = "sigma_BR"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.attGuidanceOutMsgName + '.' + moduleOutputName,
list(range(3)))
# set the filtered output truth states
eHat = np.cross(-np.array(planet_B), np.array(camera_Z))
eHat = eHat / np.linalg.norm(eHat)
Phi = np.arccos(np.dot(-np.array(planet_B)/np.linalg.norm(-np.array(planet_B)),np.array(camera_Z)))
sigmaTrue = eHat * np.tan(Phi/4.0)
trueVector = [
sigmaTrue.tolist(),
sigmaTrue.tolist(),
sigmaTrue.tolist()
]
if (case == 2 or case == 3 or case == 4):
trueVector = [
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]
]
# compare the module results to the truth values
accuracy = 1e-12
unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path)
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " +
moduleOutputName + " unit test at t=" +
str(moduleOutput[i,0] * mc.NANO2SEC) +
"sec\n")
#
# check omega_BR_B
#
moduleOutputName = "omega_BR_B"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.attGuidanceOutMsgName + '.' + moduleOutputName,
list(range(3)))
# set the filtered output truth states
trueVector = [
omega_BN_B.tolist(),
omega_BN_B.tolist(),
omega_BN_B.tolist()
]
if (case == 2 or case==4):
trueVector = [
(omega_BN_B - omega_RN_B_Search).tolist(),
(omega_BN_B - omega_RN_B_Search).tolist(),
(omega_BN_B - omega_RN_B_Search).tolist()
]
# compare the module results to the truth values
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " +
moduleOutputName + " unit test at t=" +
str(moduleOutput[i,0] * mc.NANO2SEC) +
"sec\n")
#
# check omega_RN_B
#
moduleOutputName = "omega_RN_B"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.attGuidanceOutMsgName + '.' + moduleOutputName,
list(range(3)))
# set the filtered output truth states
trueVector = [
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]
]
if (case == 2 or case == 4):
trueVector = [
omega_RN_B_Search,
omega_RN_B_Search,
omega_RN_B_Search
]
# compare the module results to the truth values
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " +
moduleOutputName + " unit test at t=" +
str(moduleOutput[i,0] * mc.NANO2SEC) +
"sec\n")
#
# check domega_RN_B
#
moduleOutputName = "domega_RN_B"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.attGuidanceOutMsgName + '.' + moduleOutputName,
list(range(3)))
# set the filtered output truth states
trueVector = [
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]
]
# compare the module results to the truth values
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " +
moduleOutputName + " unit test at t=" +
str(moduleOutput[i,0] * mc.NANO2SEC) +
"sec\n")
# If the argument provided at commandline "--show_plots" evaluates as true,
# plot all figures
# if show_plots:
# # plot a sample variable.
# plt.figure(1)
# plt.plot(variableState[:,0]*macros.NANO2SEC, variableState[:,1], label='Sample Variable')
# plt.legend(loc='upper left')
# plt.xlabel('Time [s]')
# plt.ylabel('Variable Description [unit]')
# plt.show()
# print out success message if no error were found
snippentName = "passFail" + str(case)
if testFailCount == 0:
colorText = 'ForestGreen'
print("PASSED: " + moduleWrap.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = 'Red'
print("FAILED: " + moduleWrap.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
opNavPointTestFunction(False, 1)