''' '''
'''
ISC License
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
import os, inspect
import numpy
import math
import pytest
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.fswAlgorithms.oe_state_ephem import oe_state_ephem
from Basilisk.simulation.sim_model import sim_model
from Basilisk.pyswice import pyswice
from Basilisk.pyswice.pyswice_spk_utilities import spkRead
import matplotlib.pyplot as plt
from Basilisk.utilities import unitTestSupport
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
splitPath = path.split('fswAlgorithms')
from Basilisk import __path__
bskPath = __path__[0]
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
orbitPosAccuracy = 10000.0
orbitVelAccuracy = 1.0
unitTestSupport.writeTeXSnippet("tolerancePosValue", str(orbitPosAccuracy), path)
unitTestSupport.writeTeXSnippet("toleranceVelValue", str(orbitVelAccuracy), path)
[docs]@pytest.mark.parametrize('validChebyCurveTime, anomFlag', [
(True, 0),
(True, 1),
(True, -1),
(False, -1)
])
def test_chebyPosFitAllTest(show_plots, validChebyCurveTime, anomFlag):
"""Module Unit Test"""
[testResults, testMessage] = chebyPosFitAllTest(show_plots, validChebyCurveTime, anomFlag)
assert testResults < 1, testMessage
def chebyPosFitAllTest(show_plots, validChebyCurveTime, anomFlag):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
#__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
numCurvePoints = 4*8640+1
curveDurationSeconds = 4*86400
logPeriod = curveDurationSeconds // (numCurvePoints - 1)
degChebCoeff = 14
integFrame = "j2000"
zeroBase = "Earth"
centralBodyMu = 3.98574405096E14
dateSpice = "2015 April 10, 00:00:00.0 TDB"
pyswice.furnsh_c(bskPath + '/supportData/EphemerisData/naif0012.tls')
et = pyswice.new_doubleArray(1)
pyswice.str2et_c(dateSpice, et)
etStart = pyswice.doubleArray_getitem(et, 0)
etEnd = etStart + curveDurationSeconds
pyswice.furnsh_c(bskPath + '/supportData/EphemerisData/de430.bsp')
pyswice.furnsh_c(bskPath + '/supportData/EphemerisData/naif0012.tls')
pyswice.furnsh_c(bskPath + '/supportData/EphemerisData/de-403-masses.tpc')
pyswice.furnsh_c(bskPath + '/supportData/EphemerisData/pck00010.tpc')
pyswice.furnsh_c(path + '/TDRSS.bsp')
tdrssPosList = []
tdrssVelList = []
timeHistory = numpy.linspace(etStart, etEnd, numCurvePoints)
posCArray = pyswice.new_doubleArray(3)
velCArray = pyswice.new_doubleArray(3)
orbEl = sim_model.classicElements()
rpArray = []
eccArray = []
incArray = []
OmegaArray = []
omegaArray = []
anomArray = []
anomPrev = 0.0
anomCount = 0
for timeVal in timeHistory:
stringCurrent = pyswice.et2utc_c(timeVal, 'C', 4, 1024, "Yo")
stateOut = spkRead('-221', stringCurrent, integFrame, zeroBase)
for i in range(3):
pyswice.doubleArray_setitem(posCArray, i, stateOut[i]*1000.0)
pyswice.doubleArray_setitem(velCArray, i, stateOut[i+3]*1000.0)
sim_model.rv2elem(centralBodyMu, posCArray, velCArray, orbEl)
tdrssPosList.append([stateOut[0]*1000.0, stateOut[1]*1000.0, stateOut[2]*1000.0] )
tdrssVelList.append([stateOut[3]*1000.0, stateOut[4]*1000.0, stateOut[5]*1000.0] )
rpArray.append(orbEl.rPeriap)
eccArray.append(orbEl.e)
incArray.append(orbEl.i)
OmegaArray.append(orbEl.Omega)
omegaArray.append(orbEl.omega)
if anomFlag == 1:
currentAnom = sim_model.E2M(sim_model.f2E(orbEl.f,orbEl.e),orbEl.e)
else:
currentAnom = orbEl.f
if currentAnom < anomPrev:
anomCount += 1
anomArray.append(2*math.pi*anomCount + currentAnom)
anomPrev = currentAnom
tdrssPosList = numpy.array(tdrssPosList)
tdrssVelList = numpy.array(tdrssVelList)
fitTimes = numpy.linspace(-1, 1, numCurvePoints)
chebRpCoeff = numpy.polynomial.chebyshev.chebfit(fitTimes, rpArray, degChebCoeff)
chebEccCoeff = numpy.polynomial.chebyshev.chebfit(fitTimes, eccArray, degChebCoeff)
chebIncCoeff = numpy.polynomial.chebyshev.chebfit(fitTimes, incArray, degChebCoeff)
chebOmegaCoeff = numpy.polynomial.chebyshev.chebfit(fitTimes, OmegaArray, degChebCoeff)
chebomegaCoeff = numpy.polynomial.chebyshev.chebfit(fitTimes, omegaArray, degChebCoeff)
chebAnomCoeff = numpy.polynomial.chebyshev.chebfit(fitTimes, anomArray, degChebCoeff)
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
sim = SimulationBaseClass.SimBaseClass()
FSWUnitTestProc = sim.CreateNewProcess(unitProcessName)
# create the dynamics task and specify the integration update time
FSWUnitTestProc.addTask(sim.CreateNewTask(unitTaskName, macros.sec2nano(logPeriod)))
oeStateModel = oe_state_ephem.OEStateEphemData()
oeStateModelWrap = sim.setModelDataWrap(oeStateModel)
oeStateModelWrap.ModelTag = "oeStateModel"
sim.AddModelToTask(unitTaskName, oeStateModelWrap, oeStateModel)
oeStateModel.stateFitOutMsgName = "veh_state_est"
oeStateModel.clockCorrInMsgName = "vehicle_clock_ephem_corr"
oeStateModel.muCentral = centralBodyMu
oeStateModel.ephArray[0].rPeriapCoeff = chebRpCoeff.tolist()
oeStateModel.ephArray[0].eccCoeff = chebEccCoeff.tolist()
oeStateModel.ephArray[0].incCoeff = chebIncCoeff.tolist()
oeStateModel.ephArray[0].argPerCoeff = chebomegaCoeff.tolist()
oeStateModel.ephArray[0].anomCoeff = chebAnomCoeff.tolist()
oeStateModel.ephArray[0].RAANCoeff = chebOmegaCoeff.tolist()
oeStateModel.ephArray[0].nChebCoeff = degChebCoeff + 1
oeStateModel.ephArray[0].ephemTimeMid = etStart + curveDurationSeconds/2.0
oeStateModel.ephArray[0].ephemTimeRad = curveDurationSeconds/2.0
if not (anomFlag == -1):
oeStateModel.ephArray[0].anomalyFlag = anomFlag
clockCorrData = oe_state_ephem.TDBVehicleClockCorrelationFswMsg()
clockCorrData.vehicleClockTime = 0.0
clockCorrData.ephemerisTime = oeStateModel.ephArray[0].ephemTimeMid - \
oeStateModel.ephArray[0].ephemTimeRad
sim.TotalSim.CreateNewMessage(unitProcessName, oeStateModel.clockCorrInMsgName,
clockCorrData.getStructSize(), 2, "TDBVehicleClockCorrelationMessage")
sim.TotalSim.WriteMessageData(oeStateModel.clockCorrInMsgName,
clockCorrData.getStructSize(), 0, clockCorrData)
sim.TotalSim.logThisMessage(oeStateModel.stateFitOutMsgName)
if not validChebyCurveTime :
sim.InitializeSimulation()
# increase the run time by one logging period so that the sim time is outside the
# valid chebychev curve duration
sim.ConfigureStopTime(int((curveDurationSeconds + logPeriod) * 1.0E9))
sim.ExecuteSimulation()
else:
sim.InitializeSimulation()
sim.ConfigureStopTime(int(curveDurationSeconds*1.0E9))
sim.ExecuteSimulation()
posChebData = sim.pullMessageLogData(oeStateModel.stateFitOutMsgName + ".r_BdyZero_N",
list(range(3)))
velChebData = sim.pullMessageLogData(oeStateModel.stateFitOutMsgName + ".v_BdyZero_N",
list(range(3)))
if not validChebyCurveTime:
lastLogidx = (curveDurationSeconds + logPeriod) // logPeriod - 1
secondLastPos = posChebData[lastLogidx + 1, 1:] - tdrssPosList[lastLogidx, :]
lastPos = posChebData[lastLogidx, 1:] - tdrssPosList[lastLogidx, :]
if not numpy.array_equal(secondLastPos, lastPos):
testFailCount += 1
testMessages.append("FAILED: Expected Chebychev position to rail high or low " + str(secondLastPos) + " != " + str(lastPos) )
secondLastVel = velChebData[lastLogidx + 1, 1:] - tdrssVelList[lastLogidx, :]
lastVel = velChebData[lastLogidx, 1:] - tdrssVelList[lastLogidx, :]
if not numpy.array_equal(secondLastVel, lastVel):
testFailCount += 1
testMessages.append("FAILED: Expected Chebychev velocity to rail high or low " + str(secondLastVel) + " != " + str(lastVel) )
else:
maxErrVec = [abs(max(posChebData[:, 1] - tdrssPosList[:, 0])),
abs(max(posChebData[:, 2] - tdrssPosList[:, 1])),
abs(max(posChebData[:,3] - tdrssPosList[:, 2]))]
maxVelErrVec = [abs(max(velChebData[:, 1] - tdrssVelList[:, 0])),
abs(max(velChebData[:, 2] - tdrssVelList[:, 1])),
abs(max(velChebData[:, 3] - tdrssVelList[:, 2]))]
if max(maxErrVec) >= orbitPosAccuracy:
testFailCount += 1
testMessages.append("FAILED: maxErrVec >= orbitPosAccuracy, TDRSS Orbit Accuracy: " + str(max(maxErrVec)))
if max(maxVelErrVec) >= orbitVelAccuracy:
testFailCount += 1
testMessages.append("FAILED: maxVelErrVec >= orbitVelAccuracy, TDRSS Velocity Accuracy: " + str(max(maxVelErrVec)))
plt.close("all")
# plot the fitted and actual position coordinates
plt.figure(1)
fig = plt.gcf()
ax = fig.gca()
ax.ticklabel_format(useOffset=False, style='plain')
for idx in range(1, 4):
plt.plot(posChebData[:, 0]*macros.NANO2HOUR, posChebData[:, idx]/1000,
color=unitTestSupport.getLineColor(idx, 3),
linewidth=0.5,
label='$r_{fit,' + str(idx) + '}$')
plt.plot(posChebData[:, 0]*macros.NANO2HOUR, tdrssPosList[:, idx-1]/1000,
color=unitTestSupport.getLineColor(idx, 3),
linestyle='dashed', linewidth=2,
label='$r_{true,' + str(idx) + '}$')
plt.legend(loc='lower right')
plt.xlabel('Time [h]')
plt.ylabel('Inertial Position [km]')
# plot the fitted and actual velocity coordinates
plt.figure(2)
for idx in range(1, 4):
plt.plot(velChebData[:, 0]*macros.NANO2HOUR, velChebData[:, idx]/1000,
color=unitTestSupport.getLineColor(idx, 3),
linewidth=0.5,
label='$v_{fit,' + str(idx) + '}$')
plt.plot(velChebData[:, 0]*macros.NANO2HOUR, tdrssVelList[:, idx-1]/1000,
color=unitTestSupport.getLineColor(idx, 3),
linestyle='dashed', linewidth=2,
label='$v_{true,' + str(idx) + '}$')
plt.legend(loc='lower right')
plt.xlabel('Time [h]')
plt.ylabel('Velocity [km/s]')
# plot the difference in position coordinates
plt.figure(3)
arrayLength = posChebData[:, 0].size
for idx in range(1,4):
plt.plot(posChebData[:, 0] * macros.NANO2HOUR, posChebData[:, idx] - tdrssPosList[:, idx-1],
color=unitTestSupport.getLineColor(idx, 3),
linewidth=0.5,
label=r'$\Delta r_{' + str(idx) + '}$')
plt.plot(velChebData[:, 0] * macros.NANO2HOUR, orbitPosAccuracy*numpy.ones(arrayLength),
color='r', linewidth=1)
plt.plot(velChebData[:, 0] * macros.NANO2HOUR, -orbitPosAccuracy * numpy.ones(arrayLength),
color='r', linewidth=1)
plt.legend(loc='lower right')
plt.xlabel('Time [h]')
plt.ylabel('Position Difference [m]')
# plot the difference in velocity coordinates
plt.figure(4)
arrayLength = velChebData[:, 0].size
for idx in range(1,4):
plt.plot(velChebData[:, 0] * macros.NANO2HOUR, velChebData[:, idx] - tdrssVelList[:, idx-1],
color=unitTestSupport.getLineColor(idx, 3),
linewidth=0.5,
label=r'$\Delta v_{' + str(idx) + '}$')
plt.plot(velChebData[:, 0] * macros.NANO2HOUR, orbitVelAccuracy*numpy.ones(arrayLength),
color='r', linewidth=1)
plt.plot(velChebData[:, 0] * macros.NANO2HOUR, -orbitVelAccuracy * numpy.ones(arrayLength),
color='r', linewidth=1)
plt.legend(loc='lower right')
plt.xlabel('Time [h]')
plt.ylabel('Velocity Difference [m/s]')
if show_plots:
plt.show()
plt.close('all')
snippentName = "passFail" + str(validChebyCurveTime)
if testFailCount == 0:
colorText = 'ForestGreen'
print("PASSED: " + oeStateModelWrap.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = 'Red'
print("Failed: " + oeStateModelWrap.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
if __name__ == "__main__":
chebyPosFitAllTest(True, # showPlots
True, # validChebyCurveTime
1) # anomFlag