''' '''
'''
ISC License
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
import sys, os, inspect
import numpy
import pytest
import math
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
import matplotlib.pyplot as plt
from Basilisk.simulation import spacecraftDynamics
from Basilisk.utilities import macros
from Basilisk.simulation import gravityEffector
from Basilisk.simulation import hingedRigidBodyStateEffector
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_
def spacecraftDynamicsAllTest(show_plots):
[testResults, testMessage] = test_SCConnected(show_plots)
assert testResults < 1, testMessage
[testResults, testMessage] = test_SCConnectedAndUnconnected(show_plots)
assert testResults < 1, testMessage
[docs]def test_SCConnected(show_plots):
"""Module Unit Test"""
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scSystem = spacecraftDynamics.SpacecraftDynamics()
scSystem.ModelTag = "spacecraftSystem"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.001) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scSystem)
# Define initial conditions of primary spacecraft
scSystem.primaryCentralSpacecraft.hub.mHub = 100
scSystem.primaryCentralSpacecraft.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
scSystem.primaryCentralSpacecraft.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
scSystem.primaryCentralSpacecraft.hub.r_CN_NInit = [[-4020338.690396649], [7490566.741852513], [5248299.211589362]]
scSystem.primaryCentralSpacecraft.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]]
scSystem.primaryCentralSpacecraft.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scSystem.primaryCentralSpacecraft.hub.omega_BN_BInit = [[0.5], [-0.4], [0.7]]
# Define docking information
dock1SC1 = spacecraftDynamics.DockingData()
dock1SC1.r_DB_B = [[1.0], [0.0], [0.0]]
dock1SC1.dcm_DB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
dock1SC1.portName = "sc1port1"
scSystem.primaryCentralSpacecraft.addDockingPort(dock1SC1)
unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
# Define Variable for panel 1
unitTestSim.panel1.mass = 100.0
unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel1.d = 1.5
unitTestSim.panel1.k = 100.0
unitTestSim.panel1.c = 0.0
unitTestSim.panel1.r_HB_B = [[0.5], [0.0], [1.0]]
unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0]]
unitTestSim.panel1.nameOfThetaState = "hingedRigidBodyTheta1"
unitTestSim.panel1.nameOfThetaDotState = "hingedRigidBodyThetaDot1"
unitTestSim.panel1.thetaInit = 5*numpy.pi/180.0
unitTestSim.panel1.thetaDotInit = 0.0
scSystem.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel1)
unitTestSim.earthGravBody = gravityEffector.GravBodyData()
unitTestSim.earthGravBody.bodyInMsgName = "earth_planet_data"
unitTestSim.earthGravBody.outputMsgName = "earth_display_frame_data"
unitTestSim.earthGravBody.mu = 0.3986004415E+15 # meters!
unitTestSim.earthGravBody.isCentralBody = True
unitTestSim.earthGravBody.useSphericalHarmParams = False
scSystem.primaryCentralSpacecraft.gravField.gravBodies = spacecraftDynamics.GravBodyVector([unitTestSim.earthGravBody])
sc2 = spacecraftDynamics.Spacecraft()
sc2.hub.mHub = 100
sc2.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
sc2.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
sc2.spacecraftName = "spacecraft2"
# Define docking information
dock1SC2 = spacecraftDynamics.DockingData()
dock1SC2.r_DB_B = [[-1.0], [0.0], [0.0]]
dock1SC2.dcm_DB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
dock1SC2.portName = "sc2port1"
sc2.addDockingPort(dock1SC2)
# Define docking information
dock2SC2 = spacecraftDynamics.DockingData()
dock2SC2.r_DB_B = [[1.0], [0.0], [0.0]]
dock2SC2.dcm_DB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
dock2SC2.portName = "sc2port2"
sc2.addDockingPort(dock2SC2)
# Define gravity for sc2
sc2.gravField.gravBodies = spacecraftDynamics.GravBodyVector([unitTestSim.earthGravBody])
sc3 = spacecraftDynamics.Spacecraft()
sc3.hub.mHub = 100
sc3.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
sc3.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
sc3.spacecraftName = "spacecraft3"
# Define docking information
dock1SC3 = spacecraftDynamics.DockingData()
dock1SC3.r_DB_B = [[-1.0], [0.0], [0.0]]
dock1SC3.dcm_DB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
dock1SC3.portName = "sc3port1"
sc3.addDockingPort(dock1SC3)
unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
# Define Variables for panel 2
unitTestSim.panel2.mass = 100.0
unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel2.d = 1.5
unitTestSim.panel2.k = 100.0
unitTestSim.panel2.c = 0.0
unitTestSim.panel2.r_HB_B = [[-0.5], [0.0], [1.0]]
unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
unitTestSim.panel2.nameOfThetaState = "hingedRigidBodyTheta2"
unitTestSim.panel2.nameOfThetaDotState = "hingedRigidBodyThetaDot2"
unitTestSim.panel2.thetaInit = 0.0
unitTestSim.panel2.thetaDotInit = 0.0
sc3.addStateEffector(unitTestSim.panel2)
# Define gravity for sc2
sc3.gravField.gravBodies = spacecraftDynamics.GravBodyVector([unitTestSim.earthGravBody])
# Attach spacecraft2 to spacecraft
scSystem.attachSpacecraftToPrimary(sc2, dock1SC2.portName, dock1SC1.portName)
# Attach spacecraft3 to spacecraft2
scSystem.attachSpacecraftToPrimary(sc3, dock1SC3.portName, dock2SC2.portName)
unitTestSim.TotalSim.logThisMessage("spacecraft_inertial_state_output", testProcessRate)
unitTestSim.InitializeSimulation()
unitTestSim.AddVariableForLogging(scSystem.ModelTag + ".primaryCentralSpacecraft" + ".totOrbEnergy", testProcessRate, 0, 0, 'double')
unitTestSim.AddVariableForLogging(scSystem.ModelTag + ".primaryCentralSpacecraft" + ".totOrbAngMomPntN_N", testProcessRate, 0, 2, 'double')
unitTestSim.AddVariableForLogging(scSystem.ModelTag + ".primaryCentralSpacecraft" + ".totRotAngMomPntC_N", testProcessRate, 0, 2, 'double')
unitTestSim.AddVariableForLogging(scSystem.ModelTag + ".primaryCentralSpacecraft" + ".totRotEnergy", testProcessRate, 0, 0, 'double')
stopTime = 1.0
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
orbEnergy = unitTestSim.GetLogVariableData(scSystem.ModelTag + ".primaryCentralSpacecraft" + ".totOrbEnergy")
orbAngMom_N = unitTestSim.GetLogVariableData(scSystem.ModelTag + ".primaryCentralSpacecraft" + ".totOrbAngMomPntN_N")
rotAngMom_N = unitTestSim.GetLogVariableData(scSystem.ModelTag + ".primaryCentralSpacecraft" + ".totRotAngMomPntC_N")
rotEnergy = unitTestSim.GetLogVariableData(scSystem.ModelTag + ".primaryCentralSpacecraft" + ".totRotEnergy")
r_BN_NOutput = unitTestSim.pullMessageLogData("spacecraft_inertial_state_output" + '.r_BN_N',
list(range(3)))
sigma_BNOutput = unitTestSim.pullMessageLogData("spacecraft_inertial_state_output" + '.sigma_BN',
list(range(3)))
truePos = [
[-4072255.7737936215, 7456050.4649078, 5258610.029627514]
]
trueSigma = [
[3.73034285e-01, -2.39564413e-03, 2.08570797e-01]
]
initialOrbAngMom_N = [
[orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]]
]
finalOrbAngMom = [
[orbAngMom_N[-1,0], orbAngMom_N[-1,1], orbAngMom_N[-1,2], orbAngMom_N[-1,3]]
]
initialRotAngMom_N = [
[rotAngMom_N[0,1], rotAngMom_N[0,2], rotAngMom_N[0,3]]
]
finalRotAngMom = [
[rotAngMom_N[-1,0], rotAngMom_N[-1,1], rotAngMom_N[-1,2], rotAngMom_N[-1,3]]
]
initialOrbEnergy = [
[orbEnergy[0,1]]
]
finalOrbEnergy = [
[orbEnergy[-1,0], orbEnergy[-1,1]]
]
initialRotEnergy = [
[rotEnergy[0,1]]
]
finalRotEnergy = [
[rotEnergy[-1,0], rotEnergy[-1,1]]
]
plt.close("all")
plt.figure()
plt.clf()
plt.plot(orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,1] - orbAngMom_N[0,1])/orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,2] - orbAngMom_N[0,2])/orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,3] - orbAngMom_N[0,3])/orbAngMom_N[0,3])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInOrbitalAngularMomentumSystem"
PlotTitle = "Change in Orbital Angular Momentum with Gravity"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(orbEnergy[:,0]*1e-9, (orbEnergy[:,1] - orbEnergy[0,1])/orbEnergy[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInOrbitalEnergySystem"
PlotTitle = "Change in Orbital Energy with Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,1] - rotAngMom_N[0,1])/rotAngMom_N[0,1], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,2] - rotAngMom_N[0,2])/rotAngMom_N[0,2], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,3] - rotAngMom_N[0,3])/rotAngMom_N[0,3])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInRotationalAngularMomentumSystem"
PlotTitle = "Change In Rotational Angular Momentum with Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(rotEnergy[:,0]*1e-9, (rotEnergy[:,1] - rotEnergy[0,1])/rotEnergy[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInRotationalEnergySystem"
PlotTitle = "Change In Rotational Energy with Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
if show_plots:
plt.show()
plt.close('all')
accuracy = 1e-8
# for i in range(0,len(truePos)):
# # check a vector values
# if not unitTestSupport.isArrayEqualRelative(r_BN_NOutput[-1,:],truePos[i],3,accuracy):
# testFailCount += 1
# testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed pos unit test")
#
# for i in range(0,len(trueSigma)):
# # check a vector values
# if not unitTestSupport.isArrayEqualRelative(sigma_BNOutput[-1,:],trueSigma[i],3,accuracy):
# testFailCount += 1
# testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed attitude unit test")
accuracy = 1e-10
for i in range(0,len(initialOrbAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed orbital angular momentum unit test")
for i in range(0,len(initialRotAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed rotational angular momentum unit test")
for i in range(0,len(initialRotEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i],initialRotEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed rotational energy unit test")
for i in range(0,len(initialOrbEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i],initialOrbEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed orbital energy unit test")
if testFailCount == 0:
print("PASSED: " + " Spacecraft Translation and Rotation Integrated Sim Test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
def test_SCConnectedAndUnconnected(show_plots):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scSystem = spacecraftDynamics.SpacecraftDynamics()
scSystem.ModelTag = "spacecraftSystem"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.001) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scSystem)
# Define initial conditions of primary spacecraft
scSystem.primaryCentralSpacecraft.hub.mHub = 100
scSystem.primaryCentralSpacecraft.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
scSystem.primaryCentralSpacecraft.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
scSystem.primaryCentralSpacecraft.hub.r_CN_NInit = [[-4020338.690396649], [7490566.741852513], [5248299.211589362]]
scSystem.primaryCentralSpacecraft.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]]
scSystem.primaryCentralSpacecraft.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scSystem.primaryCentralSpacecraft.hub.omega_BN_BInit = [[0.5], [-0.4], [0.7]]
# Define docking information
dock1SC1 = spacecraftDynamics.DockingData()
dock1SC1.r_DB_B = [[1.0], [0.0], [0.0]]
dock1SC1.dcm_DB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
dock1SC1.portName = "sc1port1"
scSystem.primaryCentralSpacecraft.addDockingPort(dock1SC1)
unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
# Define Variable for panel 1
unitTestSim.panel1.mass = 100.0
unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel1.d = 1.5
unitTestSim.panel1.k = 100.0
unitTestSim.panel1.c = 0.0
unitTestSim.panel1.r_HB_B = [[0.5], [0.0], [1.0]]
unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0]]
unitTestSim.panel1.nameOfThetaState = "hingedRigidBodyTheta1"
unitTestSim.panel1.nameOfThetaDotState = "hingedRigidBodyThetaDot1"
unitTestSim.panel1.thetaInit = 5*numpy.pi/180.0
unitTestSim.panel1.thetaDotInit = 0.0
scSystem.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel1)
unitTestSim.earthGravBody = gravityEffector.GravBodyData()
unitTestSim.earthGravBody.bodyInMsgName = "earth_planet_data"
unitTestSim.earthGravBody.outputMsgName = "earth_display_frame_data"
unitTestSim.earthGravBody.mu = 0.3986004415E+15 # meters!
unitTestSim.earthGravBody.isCentralBody = True
unitTestSim.earthGravBody.useSphericalHarmParams = False
scSystem.primaryCentralSpacecraft.gravField.gravBodies = spacecraftDynamics.GravBodyVector([unitTestSim.earthGravBody])
sc2 = spacecraftDynamics.Spacecraft()
sc2.hub.mHub = 100
sc2.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
sc2.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
sc2.spacecraftName = "spacecraft2"
# Define docking information
dock1SC2 = spacecraftDynamics.DockingData()
dock1SC2.r_DB_B = [[-1.0], [0.0], [0.0]]
dock1SC2.dcm_DB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
dock1SC2.portName = "sc2port1"
sc2.addDockingPort(dock1SC2)
# Define docking information
dock2SC2 = spacecraftDynamics.DockingData()
dock2SC2.r_DB_B = [[1.0], [0.0], [0.0]]
dock2SC2.dcm_DB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
dock2SC2.portName = "sc2port2"
sc2.addDockingPort(dock2SC2)
# Define gravity for sc2
sc2.gravField.gravBodies = spacecraftDynamics.GravBodyVector([unitTestSim.earthGravBody])
sc3 = spacecraftDynamics.Spacecraft()
sc3.hub.mHub = 100
sc3.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
sc3.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
sc3.spacecraftName = "spacecraft3"
# Define docking information
dock1SC3 = spacecraftDynamics.DockingData()
dock1SC3.r_DB_B = [[-1.0], [0.0], [0.0]]
dock1SC3.dcm_DB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
dock1SC3.portName = "sc3port1"
sc3.addDockingPort(dock1SC3)
unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
# Define Variables for panel 2
unitTestSim.panel2.mass = 100.0
unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel2.d = 1.5
unitTestSim.panel2.k = 100.0
unitTestSim.panel2.c = 0.0
unitTestSim.panel2.r_HB_B = [[-0.5], [0.0], [1.0]]
unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
unitTestSim.panel2.nameOfThetaState = "hingedRigidBodyTheta1"
unitTestSim.panel2.nameOfThetaDotState = "hingedRigidBodyThetaDot1"
unitTestSim.panel2.thetaInit = 0.0
unitTestSim.panel2.thetaDotInit = 0.0
sc3.addStateEffector(unitTestSim.panel2)
# Define gravity for sc2
sc3.gravField.gravBodies = spacecraftDynamics.GravBodyVector([unitTestSim.earthGravBody])
# Attach spacecraft2 to spacecraft
scSystem.attachSpacecraftToPrimary(sc2, dock1SC2.portName, dock1SC1.portName)
# Attach spacecraft3 to spacecraft2
scSystem.attachSpacecraftToPrimary(sc3, dock1SC3.portName, dock2SC2.portName)
# Define two independent spacecraft
sc4 = spacecraftDynamics.Spacecraft()
sc4.hub.mHub = 100
sc4.hub.r_BcB_B = [[0.0], [0.0], [0.1]]
sc4.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
sc4.hub.r_CN_NInit = [[7490566.741852513],[-4020338.690396649],[5248299.211589362]]
sc4.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]]
sc4.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
sc4.hub.omega_BN_BInit = [[0.5], [-0.4], [0.7]]
sc4.spacecraftName = "spacecraft4"
# Define gravity for sc4
sc4.gravField.gravBodies = spacecraftDynamics.GravBodyVector([unitTestSim.earthGravBody])
unitTestSim.panel3 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
# Define Variables for panel 1 on sc4
unitTestSim.panel3.mass = 100.0
unitTestSim.panel3.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel3.d = 1.5
unitTestSim.panel3.k = 100.0
unitTestSim.panel3.c = 0.0
unitTestSim.panel3.r_HB_B = [[-0.5], [0.0], [1.0]]
unitTestSim.panel3.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
unitTestSim.panel3.nameOfThetaState = "hingedRigidBodyTheta1"
unitTestSim.panel3.nameOfThetaDotState = "hingedRigidBodyThetaDot1"
unitTestSim.panel3.thetaInit = 0.0
unitTestSim.panel3.thetaDotInit = 0.0
sc4.addStateEffector(unitTestSim.panel3)
scSystem.addSpacecraftUndocked(sc4)
sc5 = spacecraftDynamics.Spacecraft()
sc5.hub.mHub = 100
sc5.hub.r_BcB_B = [[0.1], [0.0], [0.0]]
sc5.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
sc5.hub.r_CN_NInit = [[5248299.211589362],[7490566.741852513],[-4020338.690396649]]
sc5.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]]
sc5.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
sc5.hub.omega_BN_BInit = [[0.5], [-0.4], [0.7]]
sc5.spacecraftName = "spacecraft5"
# Define gravity for sc4
sc5.gravField.gravBodies = spacecraftDynamics.GravBodyVector([unitTestSim.earthGravBody])
scSystem.addSpacecraftUndocked(sc5)
unitTestSim.TotalSim.logThisMessage("spacecraft_inertial_state_output", testProcessRate)
unitTestSim.TotalSim.logThisMessage("spacecraft4_inertial_state_output", testProcessRate)
unitTestSim.TotalSim.logThisMessage("spacecraft5_inertial_state_output", testProcessRate)
unitTestSim.TotalSim.logThisMessage("spacecraft_energy_momentum_output", testProcessRate)
unitTestSim.TotalSim.logThisMessage("spacecraft4_energy_momentum_output", testProcessRate)
unitTestSim.TotalSim.logThisMessage("spacecraft5_energy_momentum_output", testProcessRate)
unitTestSim.InitializeSimulation()
stopTime = 1.0
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
r_BN_NOutput = unitTestSim.pullMessageLogData("spacecraft_inertial_state_output" + '.r_BN_N',
list(range(3)))
sigma_BNOutput = unitTestSim.pullMessageLogData("spacecraft_inertial_state_output" + '.sigma_BN',
list(range(3)))
r_BN_NOutput1 = unitTestSim.pullMessageLogData("spacecraft4_inertial_state_output" + '.r_BN_N',
list(range(3)))
sigma_BNOutput1 = unitTestSim.pullMessageLogData("spacecraft4_inertial_state_output" + '.sigma_BN',
list(range(3)))
r_BN_NOutput2 = unitTestSim.pullMessageLogData("spacecraft5_inertial_state_output" + '.r_BN_N',
list(range(3)))
sigma_BNOutput2 = unitTestSim.pullMessageLogData("spacecraft5_inertial_state_output" + '.sigma_BN',
list(range(3)))
rotEnergy = unitTestSim.pullMessageLogData("spacecraft_energy_momentum_output" + '.spacecraftRotEnergy',
list(range(1)))
orbEnergy = unitTestSim.pullMessageLogData("spacecraft_energy_momentum_output" + '.spacecraftOrbEnergy',
list(range(1)))
rotAngMom_N = unitTestSim.pullMessageLogData("spacecraft_energy_momentum_output" + '.spacecraftRotAngMomPntC_N',
list(range(3)))
orbAngMom_N = unitTestSim.pullMessageLogData("spacecraft_energy_momentum_output" + '.spacecraftOrbAngMomPntN_N',
list(range(3)))
rotEnergy1 = unitTestSim.pullMessageLogData("spacecraft4_energy_momentum_output" + '.spacecraftRotEnergy',
list(range(1)))
orbEnergy1 = unitTestSim.pullMessageLogData("spacecraft4_energy_momentum_output" + '.spacecraftOrbEnergy',
list(range(1)))
rotAngMom1_N = unitTestSim.pullMessageLogData("spacecraft4_energy_momentum_output" + '.spacecraftRotAngMomPntC_N',
list(range(3)))
orbAngMom1_N = unitTestSim.pullMessageLogData("spacecraft4_energy_momentum_output" + '.spacecraftOrbAngMomPntN_N',
list(range(3)))
rotEnergy2 = unitTestSim.pullMessageLogData("spacecraft5_energy_momentum_output" + '.spacecraftRotEnergy',
list(range(1)))
orbEnergy2 = unitTestSim.pullMessageLogData("spacecraft5_energy_momentum_output" + '.spacecraftOrbEnergy',
list(range(1)))
rotAngMom2_N = unitTestSim.pullMessageLogData("spacecraft5_energy_momentum_output" + '.spacecraftRotAngMomPntC_N',
list(range(3)))
orbAngMom2_N = unitTestSim.pullMessageLogData("spacecraft5_energy_momentum_output" + '.spacecraftOrbAngMomPntN_N',
list(range(3)))
truePos = [
[-4072255.7737936215, 7456050.4649078, 5258610.029627514]
]
trueSigma = [
[3.73034285e-01, -2.39564413e-03, 2.08570797e-01]
]
initialOrbAngMom_N = [
[orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]]
]
finalOrbAngMom = [
[orbAngMom_N[-1,0], orbAngMom_N[-1,1], orbAngMom_N[-1,2], orbAngMom_N[-1,3]]
]
initialRotAngMom_N = [
[rotAngMom_N[0,1], rotAngMom_N[0,2], rotAngMom_N[0,3]]
]
finalRotAngMom = [
[rotAngMom_N[-1,0], rotAngMom_N[-1,1], rotAngMom_N[-1,2], rotAngMom_N[-1,3]]
]
initialOrbEnergy = [
[orbEnergy[0,1]]
]
finalOrbEnergy = [
[orbEnergy[-1,0], orbEnergy[-1,1]]
]
initialRotEnergy = [
[rotEnergy[0,1]]
]
finalRotEnergy = [
[rotEnergy[-1,0], rotEnergy[-1,1]]
]
plt.figure()
plt.clf()
plt.plot(orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,1] - orbAngMom_N[0,1])/orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,2] - orbAngMom_N[0,2])/orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,3] - orbAngMom_N[0,3])/orbAngMom_N[0,3])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInOrbitalAngularMomentum"
PlotTitle = "Change in Orbital Angular Momentum with Gravity"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(orbEnergy[:,0]*1e-9, (orbEnergy[:,1] - orbEnergy[0,1])/orbEnergy[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInOrbitalEnergy"
PlotTitle = "Change in Orbital Energy with Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,1] - rotAngMom_N[0,1])/rotAngMom_N[0,1], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,2] - rotAngMom_N[0,2])/rotAngMom_N[0,2], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,3] - rotAngMom_N[0,3])/rotAngMom_N[0,3])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInRotationalAngularMomentum"
PlotTitle = "Change In Rotational Angular Momentum with Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(rotEnergy[:,0]*1e-9, (rotEnergy[:,1] - rotEnergy[0,1])/rotEnergy[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInRotationalEnergy"
PlotTitle = "Change In Rotational Energy with Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(orbAngMom1_N[:,0]*1e-9, (orbAngMom1_N[:,1] - orbAngMom1_N[0,1])/orbAngMom1_N[0,1], orbAngMom1_N[:,0]*1e-9, (orbAngMom1_N[:,2] - orbAngMom1_N[0,2])/orbAngMom1_N[0,2], orbAngMom1_N[:,0]*1e-9, (orbAngMom1_N[:,3] - orbAngMom1_N[0,3])/orbAngMom1_N[0,3])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInOrbitalAngularMomentum1"
PlotTitle = "Change in Orbital Angular Momentum with Gravity"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(orbEnergy1[:,0]*1e-9, (orbEnergy1[:,1] - orbEnergy1[0,1])/orbEnergy1[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInOrbitalEnergy1"
PlotTitle = "Change in Orbital Energy with Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(rotAngMom1_N[:,0]*1e-9, (rotAngMom1_N[:,1] - rotAngMom1_N[0,1])/rotAngMom1_N[0,1], rotAngMom1_N[:,0]*1e-9, (rotAngMom1_N[:,2] - rotAngMom1_N[0,2])/rotAngMom1_N[0,2], rotAngMom1_N[:,0]*1e-9, (rotAngMom1_N[:,3] - rotAngMom1_N[0,3])/rotAngMom1_N[0,3])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInRotationalAngularMomentum1"
PlotTitle = "Change In Rotational Angular Momentum with Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(rotEnergy1[:,0]*1e-9, (rotEnergy1[:,1] - rotEnergy1[0,1])/rotEnergy1[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInRotationalEnergy1"
PlotTitle = "Change In Rotational Energy with Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(orbAngMom2_N[:,0]*1e-9, (orbAngMom2_N[:,1] - orbAngMom2_N[0,1])/orbAngMom2_N[0,1], orbAngMom2_N[:,0]*1e-9, (orbAngMom2_N[:,2] - orbAngMom2_N[0,2])/orbAngMom2_N[0,2], orbAngMom2_N[:,0]*1e-9, (orbAngMom2_N[:,3] - orbAngMom2_N[0,3])/orbAngMom2_N[0,3])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInOrbitalAngularMomentum2"
PlotTitle = "Change in Orbital Angular Momentum with Gravity"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(orbEnergy2[:,0]*1e-9, (orbEnergy2[:,1] - orbEnergy2[0,1])/orbEnergy2[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInOrbitalEnergy2"
PlotTitle = "Change in Orbital Energy with Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(rotAngMom2_N[:,0]*1e-9, (rotAngMom2_N[:,1] - rotAngMom2_N[0,1])/rotAngMom2_N[0,1], rotAngMom2_N[:,0]*1e-9, (rotAngMom2_N[:,2] - rotAngMom2_N[0,2])/rotAngMom2_N[0,2], rotAngMom2_N[:,0]*1e-9, (rotAngMom2_N[:,3] - rotAngMom2_N[0,3])/rotAngMom2_N[0,3])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInRotationalAngularMomentum2"
PlotTitle = "Change In Rotational Angular Momentum with Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(rotEnergy2[:,0]*1e-9, (rotEnergy2[:,1] - rotEnergy2[0,1])/rotEnergy2[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
PlotName = "ChangeInRotationalEnergy2"
PlotTitle = "Change In Rotational Energy with Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
if show_plots:
plt.show()
plt.close('all')
accuracy = 1e-8
# for i in range(0,len(truePos)):
# # check a vector values
# if not unitTestSupport.isArrayEqualRelative(r_BN_NOutput[-1,:],truePos[i],3,accuracy):
# testFailCount += 1
# testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed pos unit test")
#
# for i in range(0,len(trueSigma)):
# # check a vector values
# if not unitTestSupport.isArrayEqualRelative(sigma_BNOutput[-1,:],trueSigma[i],3,accuracy):
# testFailCount += 1
# testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed attitude unit test")
accuracy = 1e-10
for i in range(0,len(initialOrbAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed orbital angular momentum unit test")
for i in range(0,len(initialRotAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed rotational angular momentum unit test")
for i in range(0,len(initialRotEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i],initialRotEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed rotational energy unit test")
for i in range(0,len(initialOrbEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i],initialOrbEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed orbital energy unit test")
if testFailCount == 0:
print("PASSED: " + " Spacecraft Translation and Rotation Integrated Sim Test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
if __name__ == "__main__":
test_SCConnected(True)