Source code for test_magnetometer

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#


#
#   Unit Test Script
#   Module Name:        Magnetometer - TAM
#   Author:             Demet Cilden-Guler
#   Creation Date:      September 25, 2019
#

import pytest
import os, inspect
import numpy as np

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))

bskPath = path.split('src')[0]

# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport                  # general support file with common unit test functions
from Basilisk.simulation import magnetometer
from Basilisk.simulation import simMessages
from Basilisk.utilities import macros
from Basilisk.utilities import RigidBodyKinematics as rbk

[docs]@pytest.mark.parametrize("useNoiseStd, errTol", [(False, 1e-10), (True, 1e-2)]) @pytest.mark.parametrize("useBias", [True, False]) @pytest.mark.parametrize("useMinOut, useMaxOut", [(True, True), (False, False)]) @pytest.mark.parametrize("useScaleFactor", [True, False]) # update "module" in this function name to reflect the module name def test_module(show_plots, useNoiseStd, useBias, useMinOut, useMaxOut, useScaleFactor, errTol): """ **Validation Test Description** This section describes the specific unit tests conducted on this module. The test contains 16 tests and is located at ``test_magnetometer.py``. The success criteria is to match the outputs with the generated truth. Args: useNoiseStd (string): Defines if the standard deviation of the magnetometer measurements is used for this parameterized unit test useBias (string): Defines if the bias on the magnetometer measurements is used for this parameterized unit test useMinOut (string): Defines if the minimum bound for the measurement saturation is used for this parameterized unit test useMaxOut (string): Defines if the maximum bound for the measurement saturation is used for this parameterized unit test useScaleFactor (string): Defines if the scaling on the measurement is used for this parameterized unit test errTol (double): Defines the error tolerance for this parameterized unit test **Description of Variables Being Tested** In this file, we are checking the values of the variable: ``tamData[3]`` which is pulled from the log data to see if they match with the expected truth values. """ # each test method requires a single assert method to be called [testResults, testMessage] = run(show_plots, useNoiseStd, useBias, useMinOut, useMaxOut, useScaleFactor, errTol) assert testResults < 1, testMessage
def run(show_plots, useNoiseStd, useBias, useMinOut, useMaxOut, useScaleFactor, errTol): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # terminateSimulation() is needed if multiple unit test scripts are run # that run a simulation for the test. This creates a fresh and # consistent simulation environment for each test run. # Create test thread testProcessRate_s = 0.01 testProcessRate = macros.sec2nano(testProcessRate_s) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container testModule = magnetometer.Magnetometer() testModule.ModelTag = "TAM_sensor" testModule.tamDataOutMsgName = "TAM_output" NoiseStd = 3e-9 # Tesla bias = [1e-6, 1e-6, 1e-5] # Tesla minOut = -1e-4 # Tesla maxOut = 1e-4 # Tesla if useNoiseStd: testModule.senNoiseStd = NoiseStd if useBias: testModule.senBias = bias if useScaleFactor: testModule.scaleFactor = 2 if useMinOut & useMaxOut: testModule.minOutput = minOut testModule.maxOutput = maxOut # Add module to the task unitTestSim.AddModelToTask(unitTaskName, testModule) # Set-up fake magnetic field testModule.magIntMsgName = "True magnetic field" magFieldMsg = simMessages.MagneticFieldSimMsg() trueMagField = [1e-5, 2e-5, 1.5e-5] # [T] true magnetic field outputs in inertial frame magFieldMsg.magField_N = trueMagField unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, testModule.magIntMsgName, magFieldMsg) # Set-up fake attitude satelliteStateMsg = simMessages.SCPlusStatesSimMsg() angles = np.linspace(0., 2 * np.pi, 59000) sigmas = np.zeros(len(angles)) for i in range(len(sigmas)): # convert rotation angle about 3rd axis to MRP sigmas[i] = np.tan(angles[i] / 4.) # This is iterated through in the execution for loop satelliteStateMsg.sigma_BN = [0.3, 0.2, sigmas[i]] unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, testModule.stateIntMsgName, satelliteStateMsg) dcm_BN = rbk.MRP2C(satelliteStateMsg.sigma_BN) # Sensor set-up yaw = 0.7854 # [rad] pitch = 1.0 # [rad] roll = 0.1 # [rad] dcm_SB_py = rbk.euler3212C([yaw, pitch, roll]) # for checking the dcm_SB dcm_SB = testModule.setBodyToSensorDCM(yaw, pitch, roll) dcm_SN = np.dot(dcm_SB, dcm_BN) trueTam_S = np.dot(dcm_SN, trueMagField) if useBias: trueTam_S += bias # Tesla if useScaleFactor: trueTam_S *= 2 for i in range(len(trueTam_S)): if useMinOut & useMaxOut: if trueTam_S[i] < minOut: trueTam_S[i] = minOut if trueTam_S[i] > maxOut: trueTam_S[i] = maxOut # Setup logging on the test module output message so that we get all the writes to it unitTestSim.TotalSim.logThisMessage(testModule.tamDataOutMsgName, testProcessRate) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() unitTestSim.TotalSim.SingleStepProcesses() # This pulls the actual data log from the simulation run. tamData = unitTestSim.pullMessageLogData(testModule.tamDataOutMsgName + ".OutputData", list(range(3))) print(tamData) print(trueTam_S) if not unitTestSupport.isArrayEqualRelative(tamData[0], trueTam_S, 3, errTol): testFailCount += 1 # print out success or failure message if testFailCount == 0: print("PASSED: " + testModule.ModelTag) else: print("Failed: " + testModule.ModelTag) print("This test uses a relative accuracy value of " + str(errTol*100) + " percent") return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_module( # update "module" in function name False, # show_plots True, # useNoiseStd True, # useBias True, # useMinOut True, # useMaxOut True, # useScaleFactor 1e-2 # errTol )