Source code for test_magneticFieldCenteredDipole

''' '''
'''
 ISC License

 Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder

 Permission to use, copy, modify, and/or distribute this software for any
 purpose with or without fee is hereby granted, provided that the above
 copyright notice and this permission notice appear in all copies.

 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

'''
#
#   Unit Test Script
#   Module Name:        magneticField - Centered Dipole Model
#   Author:             Hanspeter Schaub
#   Creation Date:      March 10, 2019
#

import pytest
import os, inspect
import numpy as np

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
bskName = 'Basilisk'
splitPath = path.split(bskName)







# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport                  # general support file with common unit test functions
from Basilisk.simulation import magneticFieldCenteredDipole
from Basilisk.simulation import simMessages
from Basilisk.utilities import macros
from Basilisk.utilities import orbitalMotion
from Basilisk.utilities import simSetPlanetEnvironment


# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
#   of the multiple test runs for this test.
[docs]@pytest.mark.parametrize("useDefault", [ True, False]) @pytest.mark.parametrize("useMinReach", [ True, False]) @pytest.mark.parametrize("useMaxReach", [ True, False]) @pytest.mark.parametrize("usePlanetEphemeris", [ True, False]) # update "module" in this function name to reflect the module name def test_module(show_plots, useDefault, useMinReach, useMaxReach, usePlanetEphemeris): """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = run(show_plots, useDefault, useMinReach, useMaxReach, usePlanetEphemeris) assert testResults < 1, testMessage
def run(show_plots, useDefault, useMinReach, useMaxReach, usePlanetEphemeris): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # terminateSimulation() is needed if multiple unit test scripts are run # that run a simulation for the test. This creates a fresh and # consistent simulation environment for each test run. # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container testModule = magneticFieldCenteredDipole.MagneticFieldCenteredDipole() testModule.ModelTag = "CenteredDipole" if useDefault: refg10 = 0.0 # Tesla refg11 = 0.0 # Tesla refh11 = 0.0 # Tesla refPlanetRadius = 0.0 # meters else: simSetPlanetEnvironment.centeredDipoleMagField(testModule, "earth") refg10 = testModule.g10 refg11 = testModule.g11 refh11 = testModule.h11 refPlanetRadius = testModule.planetRadius minReach = -1.0 if useMinReach: minReach = (orbitalMotion.REQ_EARTH+300.)*1000.0 # meters testModule.envMinReach = minReach maxReach = -1.0 if useMaxReach: maxReach = (orbitalMotion.REQ_EARTH+100.) # meters testModule.envMaxReach = maxReach planetPosition = np.array([0.0, 0.0, 0.0]) refPlanetDCM = np.array(((1, 0, 0), (0, 1, 0), (0, 0, 1))) if usePlanetEphemeris: planetStateMsg = simMessages.SpicePlanetStateSimMsg() planetPosition = [1000.0, 2000.0, -1000.0] planetStateMsg.PositionVector = planetPosition refPlanetDCM = np.array(((-1, 0, 0), (0, -1, 0), (0, 0, 1))) planetStateMsg.J20002Pfix = refPlanetDCM.tolist() planetStateMsgName = "planet_ephemeris" unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, planetStateMsgName, planetStateMsg) testModule.planetPosInMsgName = planetStateMsgName # add spacecraft to environment model sc0StateMsgName = "sc0_state" sc1StateMsgName = "sc1_state" testModule.addSpacecraftToModel(sc0StateMsgName) testModule.addSpacecraftToModel(sc1StateMsgName) unitTestSim.AddModelToTask(unitTaskName, testModule) # define the spacecraft locations r0 = 6571 * 1000.0 # meters r1 = 6600 * 1000.0 # meters # # setup orbit and simulation time oe = orbitalMotion.ClassicElements() mu = 0.3986004415E+15 # meters^3/s^2 oe.a = r0 oe.e = 0.0 oe.i = 45.0 * macros.D2R oe.Omega = 30.0 * macros.D2R oe.omega = 120.0 * macros.D2R oe.f = 0.0 * macros.D2R r0N, v0N = orbitalMotion.elem2rv(mu, oe) oe.a = r1 r1N, v1N = orbitalMotion.elem2rv(mu, oe) # create the input messages sc0StateMsg = simMessages.SCPlusStatesSimMsg() # Create a structure for the input message sc0StateMsg.r_BN_N = np.array(r0N) + np.array(planetPosition) unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, sc0StateMsgName, sc0StateMsg) sc1StateMsg = simMessages.SCPlusStatesSimMsg() # Create a structure for the input message sc1StateMsg.r_BN_N = np.array(r1N) + np.array(planetPosition) unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, sc1StateMsgName, sc1StateMsg) # Setup logging on the test module output message so that we get all the writes to it unitTestSim.TotalSim.logThisMessage(testModule.envOutMsgNames[0], testProcessRate) unitTestSim.TotalSim.logThisMessage(testModule.envOutMsgNames[1], testProcessRate) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation # Begin the simulation time run set above unitTestSim.ExecuteSimulation() # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) mag0Data = unitTestSim.pullMessageLogData(testModule.envOutMsgNames[0] + ".magField_N", list(range(3))) mag1Data = unitTestSim.pullMessageLogData(testModule.envOutMsgNames[1] + ".magField_N", list(range(3))) def centeredDipole(pos_N, X, refPlanetRadius, refPlanetDCM, minReach, maxReach): radius = np.linalg.norm(pos_N) planetPos_E = refPlanetDCM.dot(pos_N) rHat_E = planetPos_E/radius magField_E = (refPlanetRadius/radius)**3 * (3*rHat_E*np.dot(rHat_E, X)-X) magField_N = [((refPlanetDCM.transpose()).dot(magField_E)).tolist()]*3 if radius < minReach: magField_N = [[0.0, 0.0, 0.0]]*3 if radius > maxReach and maxReach > 0: magField_N = [[0.0, 0.0, 0.0]]*3 return magField_N # compare the module results to the truth values accuracy = 1e-5 unitTestSupport.writeTeXSnippet("unitTestToleranceValue", str(accuracy), path) # check the exponential atmosphere results # # check spacecraft 0 neutral density results if len(mag0Data) > 0: trueMagField = centeredDipole(r0N, np.array([refg11, refh11, refg10]), refPlanetRadius, refPlanetDCM, minReach, maxReach) testFailCount, testMessages = unitTestSupport.compareArrayRelative( trueMagField, mag0Data, accuracy, "SC0 mag vector", testFailCount, testMessages) if len(mag1Data) > 0: trueMagField = centeredDipole(r1N, np.array([refg11, refh11, refg10]), refPlanetRadius, refPlanetDCM, minReach, maxReach) testFailCount, testMessages = unitTestSupport.compareArrayRelative( trueMagField, mag1Data, accuracy, "SC1 mag vector", testFailCount, testMessages) # print out success or failure message snippentName = "unitTestPassFail" + str(useDefault) + str(useMinReach) + str(useMaxReach) + str(usePlanetEphemeris) if testFailCount == 0: colorText = 'ForestGreen' print("PASSED: " + testModule.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}' else: colorText = 'Red' print("Failed: " + testModule.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}' unitTestSupport.writeTeXSnippet(snippentName, passedText, path) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_module( # update "module" in function name False, # showplots False, # useDefault False, # useMinReach False, # useMaxReach True # usePlanetEphemeris )