#
# Unit Test Script
# Module Name: pixelLineConverter.py
# Creation Date: May 16, 2019
#
from Basilisk.utilities import SimulationBaseClass, unitTestSupport, macros
from Basilisk.fswAlgorithms.faultDetection import faultDetection
from Basilisk.utilities import RigidBodyKinematics as rbk
import os, inspect, pytest
import numpy as np
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
[docs]@pytest.mark.parametrize("r_c1, r_c2, valid1, valid2, faultMode", [
([10, 10, 1], [10, 10, 1], 1, 1, 1), # No merge, all valid, no fault
([10, 10, 1], [10, 10, 1], 1, 0, 1), #No merge, one valid, no fault
([10, 10, 1], [10, 10, 1], 1, 0, 2), #No merge, one valid, no fault, mode 2
([10, 10, 1], [10, 10, 1], 0, 1, 1), # No merge, other valid, no fault
([10, 10, 1], [10, 10, 1], 0, 1, 2), # No merge, other valid, no fault, mode 2
([10, 10, 1], [10, 10, 1], 0, 1, 0), # Merge, other valid, no fault
([10, 10, 1], [10, 10, 1], 0, 0, 1), # No merge, none valid, no fault
([10, 10, 1], [100, 10, 1], 1, 1, 1), # No merge, all valid, fault
([10, 10, 1], [100, 10, 1], 1, 1, 0), # merge, all valid, fault
([10, 10, 1], [11, 9, 0.5], 1, 1, 0), # merge, all valid, no fault
([10, 10, 1], [11, 9, 0.5], 1, 1, 2), # merge, all valid, no fault, mode 2
([10, 10, 1], [11, 9, 0.5], 1, 1, 0), # merge, all valid, no fault
])
def test_faultdetection(show_plots, r_c1, r_c2, valid1, valid2, faultMode):
"""
**Validation Test Description**
This module tests the fault detection scenario. The logic behind the fault detection is explained in the doxygen documentation.
In order to properly test the proper functioning of the fault detection, all the possible combinations are run (8).
The expected results are computed in python and are tested with the output.
**Test Parameters**
absolute accuracy value of 1E-10 is used in this test
- case 1: ([10, 10, 1], [10, 10, 1], 1, 1, 0)
No measurement merge, all are valid, no faults
- case 2: ([10, 10, 1], [10, 10, 1], 1, 0, 0)
No measurement merge, one valid, no faults
- case 3: ([10, 10, 1], [10, 10, 1], 1, 0, 2)
No measurement merge, one valid, no faults, mode 2
- case 4: ([10, 10, 1], [10, 10, 1], 0, 1, 0)
No measurement merge, other valid, no faults
- case 5: ([10, 10, 1], [10, 10, 1], 0, 1, 0)
No measurement merge, other valid, no faults, mode 2
- case 6: ([10, 10, 1], [10, 10, 1], 0, 1, 1)
Merge on, other valid, no faults
- case 7: ([10, 10, 1], [10, 10, 1], 0, 0, 0)
No merge, none valid, no faults
- case 8: ([10, 10, 1], [100, 10, 1], 1, 1, 0)
No merge, all measurements valid, fault
- case 9: ([10, 10, 1], [100, 10, 1], 1, 1, 1)
Merge, all measurements valid, fault
- case 10: ([10, 10, 1], [100, 10, 1], 1, 1, 2)
Merge, all measurements valid, fault, mode 2
- case 11: ([10, 10, 1], [10, 10, 1], 1, 1, 1)
Merge, all measurements valid, no fault
**Description of Variables Being Tested**
The time, detection of a fault, measurement, and measurement covariances are tested on the output.
These are ``r_BN_N``, ``covar_N``, ``time``, ``faultDetected``
"""
[testResults, testMessage] = faultdetection(show_plots, r_c1, r_c2, valid1, valid2, faultMode)
assert testResults < 1, testMessage
[docs]def faultdetection(show_plots, r_c1, r_c2, valid1, valid2, faultMode):
""" Test the faultdetection module. Setup a simulation """
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# This is needed if multiple unit test scripts are run
# This create a fresh and consistent simulation environment for each test run
unitTestSim.TotalSim.terminateSimulation()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Add a new task to the process
# Construct the ephemNavConverter module
# Set the names for the input messages
faults = faultDetection.FaultDetectionData() # Create a config struct
faults.navMeasPrimaryMsgName = "primary_opnav"
faults.navMeasSecondaryMsgName = "secondary_opnav"
faults.cameraConfigMsgName = "camera_config_name"
faults.attInMsgName = "nav_att_name"
faults.opNavOutMsgName = "output_nav_msg"
faults.sigmaFault = 3
faults.faultMode = faultMode
# ephemNavConfig.outputState = simFswInterfaceMessages.NavTransIntMsg()
# This calls the algContain to setup the selfInit, crossInit, update, and reset
faultsWrap = unitTestSim.setModelDataWrap(faults)
faultsWrap.ModelTag = "faultDet"
# Add the module to the task
unitTestSim.AddModelToTask(unitTaskName, faultsWrap, faults)
# Create the input messages.
inputPrimary = faultDetection.OpNavFswMsg()
inputSecondary = faultDetection.OpNavFswMsg()
inputCamera = faultDetection.CameraConfigMsg()
inputAtt = faultDetection.NavAttIntMsg()
# Set camera
inputCamera.focalLength = 1.
inputCamera.sensorSize = [10, 10] # In mm
inputCamera.resolution = [512, 512]
inputCamera.sigma_CB = [1.,0.3,0.1]
unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, faults.cameraConfigMsgName, inputCamera)
# Set attitude
inputAtt.sigma_BN = [0.6, 1., 0.1]
unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, faults.attInMsgName, inputAtt)
BN = rbk.MRP2C(inputAtt.sigma_BN)
CB = rbk.MRP2C(inputCamera.sigma_CB)
NC = np.dot(BN.T, CB.T)
# Set primary
inputPrimary.r_BN_C = r_c1
inputPrimary.r_BN_N = np.dot(NC, np.array(r_c1)).tolist()
inputPrimary.valid = valid1
inputPrimary.covar_C = [0.5, 0., 0., 0., 0.5, 0., 0., 0., 1.]
inputPrimary.covar_N = np.dot(np.dot(NC, np.array([0.5, 0., 0., 0., 0.5, 0., 0., 0., 1.]).reshape([3,3])), NC.T).flatten().tolist()
inputPrimary.timeTag = 12345
unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, faults.navMeasPrimaryMsgName, inputPrimary)
# Set secondary
inputSecondary.r_BN_C = r_c2
inputSecondary.r_BN_N = np.dot(NC, np.array(r_c2)).tolist()
inputSecondary.valid = valid2
inputSecondary.covar_C = [0.5, 0., 0., 0., 0.5, 0., 0., 0., 1.]
inputSecondary.covar_N = np.dot(np.dot(NC, np.array([0.5, 0., 0., 0., 0.5, 0., 0., 0., 1.]).reshape([3,3])), NC.T).flatten().tolist()
inputSecondary.timeTag = 12345
unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, faults.navMeasSecondaryMsgName, inputSecondary)
# Initialize the simulation
unitTestSim.TotalSim.logThisMessage(faults.opNavOutMsgName)
unitTestSim.InitializeSimulation()
# The result isn't going to change with more time. The module will continue to produce the same result
unitTestSim.ConfigureStopTime(testProcessRate) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
# Truth Vlaues
faultDetectedTrue= 0
timTagExp = inputPrimary.timeTag
if valid1 ==0 and valid2==0:
timTagExp = 0
r_Cexp = [0,0,0]
covar_Cexp = [0,0,0,0,0,0,0,0,0]
if valid1 == 0 and valid2 ==1:
if faultMode > 0:
timTagExp = 0
r_Cexp = [0, 0, 0]
covar_Cexp = [0, 0, 0, 0, 0, 0, 0, 0, 0]
if faultMode == 0:
r_Cexp = r_c2
covar_Cexp = [0.5, 0., 0., 0., 0.5, 0., 0., 0., 1.]
if valid1 == 1 and valid2 ==0:
if faultMode < 2:
r_Cexp = r_c1
covar_Cexp = [0.5, 0., 0., 0., 0.5, 0., 0., 0., 1.]
if faultMode == 2:
timTagExp = 0
r_Cexp = [0, 0, 0]
covar_Cexp = [0, 0, 0, 0, 0, 0, 0, 0, 0]
if valid1 == 1 and valid2 ==1:
r1 = np.array(r_c1)
r2 = np.array(r_c2)
faultNorm = np.linalg.norm(r2 - r1)
covarz = np.array([0.5, 0., 0., 0., 0.5, 0., 0., 0., 1.]).reshape([3,3])
z1 = covarz[:,2]
z2 = np.copy(z1)
if (faultNorm > faults.sigmaFault*(np.linalg.norm(z1)+np.linalg.norm(z2))):
faultDetectedTrue = 1
r_Cexp = r_c2
covar_Cexp = [0.5, 0., 0., 0., 0.5, 0., 0., 0., 1.]
elif faultMode > 0:
r_Cexp = r_c1
covar_Cexp = [0.5, 0., 0., 0., 0.5, 0., 0., 0., 1.]
elif faultMode == 0:
covar_Cexp = np.linalg.inv(np.linalg.inv(covarz) + np.linalg.inv(covarz)).flatten().tolist()
r_Cexp = np.dot(np.linalg.inv(np.linalg.inv(covarz) + np.linalg.inv(covarz)), np.dot(np.linalg.inv(covarz), r1) + np.dot(np.linalg.inv(covarz), r2)).tolist()
posErr = 1e-10
print(posErr)
outputR = unitTestSim.pullMessageLogData(faults.opNavOutMsgName + '.r_BN_C', list(range(3)))
outputCovar = unitTestSim.pullMessageLogData(faults.opNavOutMsgName + '.covar_C', list(range(9)))
outputTime = unitTestSim.pullMessageLogData(faults.opNavOutMsgName + '.timeTag')
detected = unitTestSim.pullMessageLogData(faults.opNavOutMsgName + '.faultDetected')
#
#
for i in range(len(outputR[-1, 1:])):
if np.abs(r_Cexp[i] - outputR[-1, i+1]) > 1E-10 or np.isnan(outputR.any()):
testFailCount += 1
testMessages.append("FAILED: Position Check in pixelLine")
for i in range(len(outputCovar[-1, 1:])):
if np.abs((covar_Cexp[i] - outputCovar[-1, i+1])) > 1E-10 or np.isnan(outputTime.any()):
testFailCount += 1
testMessages.append("FAILED: Covar Check in pixelLine")
if np.abs((timTagExp - outputTime[-1, 1])) > 1E-10 or np.isnan(outputTime.any()):
testFailCount += 1
testMessages.append("FAILED: Time Check in pixelLine")
if np.abs(faultDetectedTrue - detected[-1, 1]) > 1E-10 or np.isnan(outputTime.any()):
testFailCount += 1
testMessages.append("FAILED: Time Check in pixelLine")
#
# print out success message if no error were found
if testFailCount == 0:
colorText = 'ForestGreen'
print("PASSED: " + faultsWrap.ModelTag)
else:
colorText = 'Red'
print("Failed: " + faultsWrap.ModelTag)
return [testFailCount, ''.join(testMessages)]
if __name__ == '__main__':
faultdetection(False ,[10, 10, 1], [11, 9, 0.5], 1, 1, 1)