''' '''
'''
ISC License
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
#
# Unit Test Script
# Module Name: eulerRotation
# Author: Mar Cols
# Creation Date: January 22, 2016
#
import numpy as np
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.fswAlgorithms.eulerRotation import eulerRotation # import the module that is to be tested
from Basilisk.utilities import macros as mc
from Basilisk.fswAlgorithms.fswMessages import fswMessages
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]def test_eulerRotation(show_plots):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = run(show_plots)
assert testResults < 1, testMessage
[testResults, testMessage] = run2(show_plots)
assert testResults < 1, testMessage
def run(show_plots):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# terminateSimulation() is needed if multiple unit test scripts are run
# that run a simulation for the test. This creates a fresh and
# consistent simulation environment for each test run.
# Test times
updateTime = 0.5 # update process rate update time
totalTestSimTime = 1.5
# Create test thread
testProcessRate = mc.sec2nano(updateTime)
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
moduleConfig = eulerRotation.eulerRotationConfig()
moduleWrap = unitTestSim.setModelDataWrap(moduleConfig)
moduleWrap.ModelTag = "eulerRotation"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
# Initialize the test module configuration data
moduleConfig.attRefInMsgName = "inputRefName"
moduleConfig.attRefOutMsgName = "outputName"
angleSet = np.array([0.0, 90.0, 0.0]) * mc.D2R
moduleConfig.angleSet = angleSet
angleRates = np.array([0.1, 0.0, 0.0]) * mc.D2R
moduleConfig.angleRates = angleRates
# Create input message and size it because the regular creator of that message
# is not part of the test.
#
# Reference Frame Message
#
RefStateOutData = fswMessages.AttRefFswMsg() # Create a structure for the input message
sigma_R0N = np.array([0.1, 0.2, 0.3])
RefStateOutData.sigma_RN = sigma_R0N
omega_R0N_N = np.array([0.1, 0.0, 0.0])
RefStateOutData.omega_RN_N = omega_R0N_N
domega_R0N_N = np.array([0.0, 0.0, 0.0])
RefStateOutData.domega_RN_N = domega_R0N_N
unitTestSupport.setMessage(unitTestSim.TotalSim,
unitProcessName,
moduleConfig.attRefInMsgName,
RefStateOutData)
# Setup logging on the test module output message so that we get all the writes to it
unitTestSim.TotalSim.logThisMessage(moduleConfig.attRefOutMsgName, testProcessRate)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(mc.sec2nano(totalTestSimTime)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
accuracy = 1e-12
#
# check sigma_RN
#
moduleOutputName = "sigma_RN"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.attRefOutMsgName + '.' + moduleOutputName,
list(range(3)))
# set the filtered output truth states
trueVector = [
[-0.193031238249, 0.608048400483, 0.386062476497],
[-0.193031238249, 0.608048400483, 0.386062476497],
[-0.193144351314, 0.607931107381, 0.386360300559],
[-0.193257454832, 0.607813704445, 0.386658117585]
]
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput,
accuracy, "sigma_RN Set",
testFailCount, testMessages)
# print '\n sigma_RN = ', moduleOutput[:, 1:], '\n'
#
# check omega_RN_N
#
moduleOutputName = "omega_RN_N"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.attRefOutMsgName + '.' + moduleOutputName,
list(range(3)))
# set the filtered output truth states
trueVector = [
[0.101246280045, 0.000182644489, 0.001208139578],
[0.101246280045, 0.000182644489, 0.001208139578],
[0.101246280045, 0.000182644489, 0.001208139578],
[0.101246280045, 0.000182644489, 0.001208139578]
]
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput,
accuracy, "omega_RN_N Vector",
testFailCount, testMessages)
#
# check domega_RN_N
#
moduleOutputName = "domega_RN_N"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.attRefOutMsgName + '.' + moduleOutputName,
list(range(3)))
# set the filtered output truth states
trueVector = [
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05],
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05],
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05],
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05]
]
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput,
accuracy, "domega_RN_N Vector",
testFailCount, testMessages)
# If the argument provided at commandline "--show_plots" evaluates as true,
# plot all figures
# if show_plots:
# # plot a sample variable.
# plt.figure(1)
# plt.plot(variableState[:,0]*macros.NANO2SEC, variableState[:,1], label='Sample Variable')
# plt.legend(loc='upper left')
# plt.xlabel('Time [s]')
# plt.ylabel('Variable Description [unit]')
# plt.show()
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
def run2(show_plots):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# terminateSimulation() is needed if multiple unit test scripts are run
# that run a simulation for the test. This creates a fresh and
# consistent simulation environment for each test run.
# Test times
updateTime = 0.5 # update process rate update time
totalTestSimTime = 1.5
# Create test thread
testProcessRate = mc.sec2nano(updateTime)
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
moduleConfig = eulerRotation.eulerRotationConfig()
moduleWrap = unitTestSim.setModelDataWrap(moduleConfig)
moduleWrap.ModelTag = "eulerRotation"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
# Initialize the test module configuration data
moduleConfig.attRefInMsgName = "inputRefName"
moduleConfig.attRefOutMsgName = "outputRefName"
moduleConfig.desiredAttInMsgName = "desiredName"
angleSet = np.array([0.0, 90.0, 0.0]) * mc.D2R
moduleConfig.angleSet = angleSet
angleRates = np.array([0.1, 0.0, 0.0]) * mc.D2R
moduleConfig.angleRates = angleRates
# Create input message and size it because the regular creator of that message
# is not part of the test.
#
# Reference Frame Message
#
RefStateOutData = fswMessages.AttRefFswMsg() # Create a structure for the input message
sigma_R0N = np.array([0.1, 0.2, 0.3])
RefStateOutData.sigma_RN = sigma_R0N
omega_R0N_N = np.array([0.1, 0.0, 0.0])
RefStateOutData.omega_RN_N = omega_R0N_N
domega_R0N_N = np.array([0.0, 0.0, 0.0])
RefStateOutData.domega_RN_N = domega_R0N_N
unitTestSupport.setMessage(unitTestSim.TotalSim,
unitProcessName,
moduleConfig.attRefInMsgName,
RefStateOutData)
# Set the desired state and rate to 0.
desiredAtt = fswMessages.AttStateFswMsg()
inputMsgSize = desiredAtt.getStructSize()
unitTestSim.TotalSim.CreateNewMessage(unitProcessName,
moduleConfig.desiredAttInMsgName,
inputMsgSize, 2)
desiredState = np.array([0, 0, 0])
desiredAtt.state = desiredState
desiredRate = np.array([0, 0, 0])
desiredAtt.rate = desiredRate
unitTestSim.TotalSim.WriteMessageData(moduleConfig.desiredAttInMsgName,
inputMsgSize,
0, desiredAtt)
# Setup logging on the test module output message so that we get all the writes to it
unitTestSim.TotalSim.logThisMessage(moduleConfig.attRefOutMsgName, testProcessRate)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(mc.sec2nano(totalTestSimTime)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
accuracy = 1e-12
#
# check sigma_RN
#
moduleOutputName = "sigma_RN"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.attRefOutMsgName + '.' + moduleOutputName,
list(range(3)))
# set the filtered output truth states
trueVector = [
[-0.193031238249, 0.608048400483, 0.386062476497],
[-0.193031238249, 0.608048400483, 0.386062476497],
[-0.193144351314, 0.607931107381, 0.386360300559],
[-0.193257454832, 0.607813704445, 0.386658117585]
]
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput,
accuracy, "sigma_RN Set",
testFailCount, testMessages)
# print '\n sigma_RN = ', moduleOutput[:, 1:], '\n'
#
# check omega_RN_N
#
moduleOutputName = "omega_RN_N"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.attRefOutMsgName + '.' + moduleOutputName,
list(range(3)))
# set the filtered output truth states
trueVector = [
[0.101246280045, 0.000182644489, 0.001208139578],
[0.101246280045, 0.000182644489, 0.001208139578],
[0.101246280045, 0.000182644489, 0.001208139578],
[0.101246280045, 0.000182644489, 0.001208139578]
]
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput,
accuracy, "omega_RN_N Vector",
testFailCount, testMessages)
#
# check domega_RN_N
#
moduleOutputName = "domega_RN_N"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.attRefOutMsgName + '.' + moduleOutputName,
list(range(3)))
# set the filtered output truth states
trueVector = [
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05],
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05],
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05],
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05]
]
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput,
accuracy, "domega_RN_N Vector",
testFailCount, testMessages)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
# run(False)
test_eulerRotation(False)