''' '''
'''
ISC License
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
#
# Coarse Sun Sensor Unit Test
#
# Purpose: Test the proper function of the coarse sun sensor (css) module.
# For basic functionality, results are compared to simple truth values calculated using np.cos().
# For noise testing, noiseless truth values are subtracted from the output and the standard deviation is compared
# to the input standard deviation.
# For css constellation set up, two identical constellations are set up with different methods and compared to
# each other
# Creation Date: May. 31, 2017
#
# @cond DOXYGEN_IGNORE
import os
import pytest
import numpy as np
from matplotlib import pyplot as plt
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport
from Basilisk.utilities import macros
from Basilisk.utilities import orbitalMotion as om
from Basilisk.simulation.coarse_sun_sensor import coarse_sun_sensor
from Basilisk.simulation.simMessages import simMessages
path = os.path.dirname(os.path.abspath(__file__))
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test.
[docs]@pytest.mark.parametrize(
"useConstellation, visibilityFactor, fov, kelly, scaleFactor, bias, noiseStd, albedoValue, sunDistInput, minIn, maxIn, errTol, name, zLevel, lineWide",
[
(False, 1.0, np.pi / 2., 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 10., 1e-10, "plain", 0, 5.),
(False, 0.5, np.pi / 2., 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 10., 1e-10, "eclipse", -1, 5.),
(False, 1.0, 3 * np.pi / 8., 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 10., 1e-10, "fieldOfView", -2, 5.),
(False, 1.0, np.pi / 2., 0.15, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 10., 1e-10, "kellyFactor", 1, 5.),
(False, 1.0, np.pi / 2., 0.0, 2.0, 0.0, 0.0, 0.0, 1.0, 0.0, 10., 1e-10, "scaleFactor", 2, 5.),
(False, 1.0, np.pi / 2., 0.0, 1.0, 0.5, 0.0, 0.0, 1.0, 0.0, 10., 1e-10, "bias", 3, 5.),
(False, 1.0, np.pi / 2., 0.0, 1.0, 0.0, 0.125, 0.0, 1.0, -10., 10., 1e-2, "deviation", -5, 1.),
# low tolerance for std deviation comparison
(False, 1.0, np.pi / 2., 0.0, 1.0, 0.0, 0.0, 0.5, 1.0, 0.0, 10., 1e-10, "albedo", -4, 5.),
(False, 1.0, np.pi / 2., 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.25, 0.75, 1e-10, "saturation", 5, 2.),
(False, 1.0, np.pi / 2., 0.0, 1.0, 0.0, 0.0, 0.0, 2.0, 0.0, 10.0, 1e-10, "sunDistance", 4, 3.),
(False, 0.5, 3 * np.pi / 8., 0.15, 2.0, 0.5, 0.0, 0.5, 2.0, 0.0, 10., 1e-10, "cleanCombined", -3, 5.),
(False, 0.5, 3 * np.pi / 8., 0.15, 2.0, 0.5, 0.125, 0.5, 2.0, -10., 10., 1e-2, "combined", -6, 1.),
(True, 1.0, np.pi / 2., 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 10., 1e-10, "constellation", 0, 1.)
])
# provide a unique test method name, starting with test_
def test_coarseSunSensor(show_plots, useConstellation, visibilityFactor, fov, kelly, scaleFactor, bias, noiseStd,
albedoValue, sunDistInput, minIn, maxIn, errTol, name, zLevel, lineWide):
'''This function is called by the py.test environment.'''
# each test method requires a single assert method to be called
[testResults, testMessage] = run(show_plots, useConstellation, visibilityFactor, fov, kelly, scaleFactor, bias,
noiseStd, albedoValue, sunDistInput, minIn, maxIn, errTol, name, zLevel, lineWide)
assert testResults < 1, testMessage
# def unitCoarseSunSensor():
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
def run(show_plots, useConstellation, visibilityFactor, fov, kelly, scaleFactor, bias, noiseStd, albedoValue,
sunDistInput, minIn, maxIn, errTol, name, zLevel, lineWide):
#
# Sim Setup
#
testFailCount = 0
testMessages = []
testTaskName = "unitTestTask"
testProcessName = "unitTestProcess"
testTaskRate = macros.sec2nano(0.1)
# Create a simulation container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Ensure simulation is empty
testProc = unitTestSim.CreateNewProcess(testProcessName)
testProc.addTask(unitTestSim.CreateNewTask(testTaskName, testTaskRate))
#
# Single CSS Setup
# Sets up a single CSS with inputs from the pytest parameterization
singleCss = coarse_sun_sensor.CoarseSunSensor()
singleCss.ModelTag = "singleCss"
singleCss.fov = fov
singleCss.kellyFactor = kelly
singleCss.scaleFactor = scaleFactor
singleCss.senBias = bias
singleCss.senNoiseStd = noiseStd
singleCss.albedoValue = albedoValue
singleCss.minOutput = minIn
singleCss.maxOutput = maxIn
singleCss.cssDataOutMsgName = "singleCssOut"
singleCss.nHat_B = np.array([1., 0., 0.])
singleCss.sunEclipseInMsgName = "eclipseMsg"
singleCss.sunInMsgName = "sunMsg"
singleCss.stateInMsgName = "satelliteState"
unitTestSim.AddModelToTask(testTaskName, singleCss)
#
# CSS Constellation Setup
# Sets up two identical constellations (P1 and P2) but uses different methods to establish nHat_B for the sensors.
if useConstellation:
cssP11 = coarse_sun_sensor.CoarseSunSensor(singleCss)
cssP12 = coarse_sun_sensor.CoarseSunSensor(singleCss)
cssP13 = coarse_sun_sensor.CoarseSunSensor(singleCss)
cssP14 = coarse_sun_sensor.CoarseSunSensor(singleCss)
cssP21 = coarse_sun_sensor.CoarseSunSensor(singleCss)
cssP22 = coarse_sun_sensor.CoarseSunSensor(singleCss)
cssP23 = coarse_sun_sensor.CoarseSunSensor(singleCss)
cssP24 = coarse_sun_sensor.CoarseSunSensor(singleCss)
cssP11.cssDataOutMsgName = "cssP11Out"
cssP12.cssDataOutMsgName = "cssP12Out"
cssP13.cssDataOutMsgName = "cssP13Out"
cssP14.cssDataOutMsgName = "cssP14Out"
cssP21.cssDataOutMsgName = "cssP21Out"
cssP22.cssDataOutMsgName = "cssP22Out"
cssP23.cssDataOutMsgName = "cssP23Out"
cssP24.cssDataOutMsgName = "cssP24Out"
# all sensors on a 45 degree, four sided pyramid mount
cssP11.nHat_B = [1. / np.sqrt(2.), 0., -1. / np.sqrt(2.)]
cssP12.nHat_B = [1. / np.sqrt(2.), 1. / np.sqrt(2.), 0.]
cssP13.nHat_B = [1. / np.sqrt(2.), 0., 1. / np.sqrt(2)]
cssP14.nHat_B = [1. / np.sqrt(2.), -1. / np.sqrt(2.), 0.]
# all except cssP24 given non-zero platform frame. B4 is not changed so that the default is tested.
cssP21.setBodyToPlatformDCM(np.pi / 2., np.pi / 2., np.pi / 2.)
cssP22.setBodyToPlatformDCM(np.pi / 2., np.pi / 2., np.pi / 2.)
cssP23.setBodyToPlatformDCM(np.pi / 2., np.pi / 2., np.pi / 2.)
# cssP24 is not changed so that the default is tested to be identity
cssP21.phi = np.pi / 4.
cssP21.theta = 0.
cssP22.phi = np.pi / 4.
cssP22.theta = np.pi / 2.
cssP23.phi = np.pi / 4.
cssP23.theta = np.pi
cssP24.phi = np.pi / 6. # remember, the cssP24 frame is the B frame. This angle is cancelled by a perturbation.
cssP24.theta = -np.pi / 8. # This angle is also provided with a perturbation to test to perturbation functionality.
cssP21.setUnitDirectionVectorWithPerturbation(0., 0.)
cssP22.setUnitDirectionVectorWithPerturbation(0., 0.)
cssP23.setUnitDirectionVectorWithPerturbation(0., 0.)
cssP24.setUnitDirectionVectorWithPerturbation(-np.pi / 8., -np.pi / 6.)
constellationP1List = [cssP11, cssP12, cssP13,
cssP14] # P1 is second platform, numbers following P2 are sensor numbers
constellationP1 = coarse_sun_sensor.CSSConstellation()
constellationP1.ModelTag = "constellationP1"
constellationP1.sensorList = coarse_sun_sensor.CSSVector(constellationP1List)
constellationP1.outputConstellationMessage = "constellationP1_Array_output"
unitTestSim.AddModelToTask(testTaskName, constellationP1)
constellationP2List = [cssP21, cssP22, cssP23, cssP24] # P2 is second platform, numbers following P2 are sensor numbers
constellationP2 = coarse_sun_sensor.CSSConstellation()
constellationP2.ModelTag = "constellationP2"
constellationP2.sensorList = coarse_sun_sensor.CSSVector(constellationP2List)
constellationP2.outputConstellationMessage = "constellationP2_Array_output"
unitTestSim.AddModelToTask(testTaskName, constellationP2)
unitTestSim.TotalSim.logThisMessage(constellationP1.outputConstellationMessage, testTaskRate)
unitTestSim.TotalSim.logThisMessage(constellationP2.outputConstellationMessage, testTaskRate)
#
# Input Message Setup
# Creates inputs from sun, spacecraft, and eclipse so that those modules don't have to be included
# Create dummy sun message
sunPositionMsg = simMessages.SpicePlanetStateSimMsg()
sunPositionMsg.PositionVector = [om.AU * 1000. * sunDistInput, 0.0, 0.0]
unitTestSupport.setMessage(unitTestSim.TotalSim,
testProcessName,
singleCss.sunInMsgName,
sunPositionMsg)
# Create dummy spacecraft message
satelliteStateMsg = simMessages.SCPlusStatesSimMsg()
satelliteStateMsg.r_BN_N = [0.0, 0.0, 0.0]
angles = np.linspace(0., 2 * np.pi, 59000)
sigmas = np.zeros(len(angles))
truthVector = np.cos(angles) # set truth vector initially, modify below based on inputs
for i in range(len(sigmas)): # convert rotation angle about 3rd axis to MRP
sigmas[i] = np.tan(angles[i] / 4.) # This is iterated through in the execution for loop
satelliteStateMsg.sigma_BN = [0., 0., sigmas[0]]
unitTestSupport.setMessage(unitTestSim.TotalSim,
testProcessName,
singleCss.stateInMsgName,
satelliteStateMsg)
satelliteStateMsgSize = satelliteStateMsg.getStructSize()
# Calculate sundistance factor
r_Sun_Sc = [0.0, 0.0, 0.0]
r_Sun_Sc[0] = sunPositionMsg.PositionVector[0] - satelliteStateMsg.r_BN_N[0]
r_Sun_Sc[1] = sunPositionMsg.PositionVector[1] - satelliteStateMsg.r_BN_N[1]
r_Sun_Sc[2] = sunPositionMsg.PositionVector[2] - satelliteStateMsg.r_BN_N[2]
sunDist = np.linalg.norm(r_Sun_Sc)
sunDistanceFactor = ((om.AU * 1000.0) ** 2) / (sunDist ** 2)
# create dummy eclipse message
eclipseMsg = simMessages.EclipseSimMsg()
eclipseMsg.shadowFactor = visibilityFactor
unitTestSupport.setMessage(unitTestSim.TotalSim,
testProcessName,
singleCss.sunEclipseInMsgName,
eclipseMsg)
#
# Modify Truth Vector Appropriately
#
for i in range(len(truthVector)):
if kelly > 0.0000000000001: # only if kelly isn't actually zero
truthVector[i] = truthVector[i] * (
1.0 - np.e ** (-truthVector[i] ** 2.0 / kelly)) # apply kelly factor, note: no albedo
truthVector[i] = truthVector[i] * visibilityFactor * sunDistanceFactor # account for eclipse effects
truthVector[i] += bias # apply bias
for i in range(len(angles)):
if angles[i] > fov and angles[i] < (2 * np.pi - fov): # first, trim to fov
truthVector[i] = 0.0
truthVector[i] += bias
truthVector = truthVector * scaleFactor
for i in range(len(truthVector)):
truthVector[i] = min([truthVector[i], maxIn])
truthVector[i] = max([truthVector[i], minIn])
#
# Initialize and run simulation one step at a time
#
unitTestSim.InitializeSimulationAndDiscover()
unitTestSim.TotalSim.logThisMessage(singleCss.cssDataOutMsgName, macros.sec2nano(0.1))
# Execute the simulation for one time step
for i in range(len(sigmas)):
satelliteStateMsg.sigma_BN = [0.0, 0.0, sigmas[i]]
unitTestSim.TotalSim.WriteMessageData(singleCss.stateInMsgName, satelliteStateMsgSize,
unitTestSim.TotalSim.CurrentNanos + testTaskRate,
satelliteStateMsg)
unitTestSim.TotalSim.SingleStepProcesses()
#
# Constellation Outputs and plots
#
cssOutput = unitTestSim.pullMessageLogData(singleCss.cssDataOutMsgName + ".OutputData", list(range(1)))
if useConstellation:
constellationP1data = unitTestSim.pullMessageLogData(constellationP1.outputConstellationMessage + ".CosValue",
list(range(len(constellationP1List))))
constellationP2data = unitTestSim.pullMessageLogData(constellationP2.outputConstellationMessage + ".CosValue",
list(range(len(constellationP2List))))
plt.figure(1, figsize=(7, 5), dpi=80, facecolor='w', edgecolor='k')
plt.clf()
plt.subplot(2, 1, 1)
for i in range(4):
sensorlabel = "cssP1" + str(i + 1)
plt.plot(constellationP1data[:, 0] * macros.NANO2MIN, constellationP1data[:, i + 1], label=sensorlabel,
linewidth=4 - i)
plt.xlabel('Time [min]')
plt.ylabel('P1 Output Values [-]')
plt.legend(loc='upper center')
plt.subplot(2, 1, 2)
# plt.figure(2,figsize=(7, 5), dpi=80, facecolor='w', edgecolor='k')
for i in range(4):
sensorlabel = "cssP2" + str(i + 1)
plt.plot(constellationP2data[:, 0] * macros.NANO2MIN, constellationP2data[:, i + 1], label=sensorlabel,
linewidth=4 - i)
plt.xlabel('Time [min]')
plt.ylabel('P2 Output Values [-]')
plt.legend(loc='upper center')
unitTestSupport.writeFigureLaTeX('constellationPlots',
'Plot of first and second constellation outputs for comparision.\
Note that the constellation starts pointing directly at the sun\
and linearly rotates in time until it returns to a direct view.',
plt, 'height=0.7\\textwidth, keepaspectratio', path)
#
# Single CSS plotting
#
else:
justTheNoise = cssOutput[:, 1] - truthVector # subtract curve from noisy curve
outputStd = np.std(justTheNoise)
plt.figure(3, figsize=(7, 5), dpi=80, facecolor='w', edgecolor='k')
plt.plot(cssOutput[:, 0] * macros.NANO2MIN, cssOutput[:, 1], label=name, zorder=zLevel, linewidth=lineWide)
plt.legend()
plt.xlabel('Time [min]')
plt.ylabel('Output Value [-]')
if name == "combined":
unitTestSupport.writeFigureLaTeX('combinedPlot',
'Plot of all cases of individual coarse sun sensor in comparison to\
each other. Note that the incidence angle starts at direct and linearly\
rotates in time until it returns to a direct view.',
plt, 'height=0.7\\textwidth, keepaspectratio', path)
if name == "constellation" and show_plots: # Don't show plots until last run.
plt.show()
plt.close('all')
#
# Compare output and truth vectors
#
if useConstellation: # compare constellation P1 to constellation P2
for i in range(0, np.shape(constellationP2data)[0]):
if not unitTestSupport.isArrayEqualRelative(constellationP2data[i][:], constellationP1data[i][1:], 4,
errTol):
testFailCount += 1
elif noiseStd == 0.0: # if a test without noise
for i in range(0, np.shape(cssOutput)[0]):
if cssOutput[i][1] == 0.0:
if not unitTestSupport.isArrayZero([0.0, cssOutput[i][1]], 1, errTol):
testFailCount += 1
else:
if not unitTestSupport.isDoubleEqualRelative(cssOutput[i][1], truthVector[i], errTol):
testFailCount += 1
else: # if "combined" or "deviation"
if not unitTestSupport.isDoubleEqualRelative(noiseStd * scaleFactor, outputStd, errTol):
testFailCount += 1
if testFailCount == 0:
colorText = 'ForestGreen'
passFailMsg = "" # "Passed: " + name + "."
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = 'Red'
passFailMsg = "Failed: " + name + "."
testMessages.append(passFailMsg)
testMessages.append(" | ")
passedText = r'\textcolor{' + colorText + '}{' + "FAILED" + '}'
# Write some snippets for AutoTex
snippetName = name + "PassedText"
snippetContent = passedText
unitTestSupport.writeTeXSnippet(snippetName, snippetContent, path)
snippetName = name + "PassFailMsg"
snippetContent = passFailMsg
unitTestSupport.writeTeXSnippet(snippetName, snippetContent, path)
print("\n", passFailMsg)
# write pytest parameters to AutoTex folder
# "useConstellation, visibilityFactor, fov, kelly, scaleFactor, bias, noiseStd, albedoValue, errTol, name, zLevel, lineWide"
useConstellationSnippetName = name + "UseConstellation"
useConstellationSnippetContent = str(useConstellation)
unitTestSupport.writeTeXSnippet(useConstellationSnippetName, useConstellationSnippetContent, path)
visibilityFactorSnippetName = name + "VisibilityFactor"
visibilityFactorSnippetContent = '{:1.2f}'.format(visibilityFactor)
unitTestSupport.writeTeXSnippet(visibilityFactorSnippetName, visibilityFactorSnippetContent, path)
fovSnippetName = name + "Fov"
fovSnippetContent = '{:1.4f}'.format(fov)
unitTestSupport.writeTeXSnippet(fovSnippetName, fovSnippetContent, path)
kellySnippetName = name + "Kelly"
kellySnippetContent = '{:1.2f}'.format(kelly)
unitTestSupport.writeTeXSnippet(kellySnippetName, kellySnippetContent, path)
scaleFactorSnippetName = name + "ScaleFactor"
scaleFactorSnippetContent = '{:1.2f}'.format(scaleFactor)
unitTestSupport.writeTeXSnippet(scaleFactorSnippetName, scaleFactorSnippetContent, path)
biasSnippetName = name + "Bias"
biasSnippetContent = '{:1.2f}'.format(bias)
unitTestSupport.writeTeXSnippet(biasSnippetName, biasSnippetContent, path)
noiseStdSnippetName = name + "NoiseStd"
noiseStdSnippetContent = '{:1.3f}'.format(noiseStd)
unitTestSupport.writeTeXSnippet(noiseStdSnippetName, noiseStdSnippetContent, path)
albedoValueSnippetName = name + "AlbedoValue"
albedoValueSnippetContent = '{:1.1f}'.format(albedoValue)
unitTestSupport.writeTeXSnippet(albedoValueSnippetName, albedoValueSnippetContent, path)
locationSnippetName = name + "Location"
locationSnippetContent = '{:1.1f}'.format(sunDistInput)
unitTestSupport.writeTeXSnippet(locationSnippetName, locationSnippetContent, path)
saturationMaxSnippetName = name + "MaxSaturation"
saturationMaxSnippetContent = '{:2.2f}'.format(maxIn)
unitTestSupport.writeTeXSnippet(saturationMaxSnippetName, saturationMaxSnippetContent, path)
saturationMinSnippetName = name + "MinSaturation"
saturationMinSnippetContent = '{:2.2f}'.format(minIn)
unitTestSupport.writeTeXSnippet(saturationMinSnippetName, saturationMinSnippetContent, path)
errTolSnippetName = name + "ErrTol"
errTolSnippetContent = '{:1.1e}'.format(errTol)
unitTestSupport.writeTeXSnippet(errTolSnippetName, errTolSnippetContent, path)
return [testFailCount, ''.join(testMessages)]
if __name__ == "__main__":
run(True, False, 1.0, np.pi / 2., 0.0, 1.0, 0.0, 0.125, 0.0, 1.0, -10., 10., 1e-2, "deviation", -5, 1.)