Source code for test_celestialTwoBodyPoint

''' '''
'''
 ISC License

 Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder

 Permission to use, copy, modify, and/or distribute this software for any
 purpose with or without fee is hereby granted, provided that the above
 copyright notice and this permission notice appear in all copies.

 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

'''
#

#   Unit Test Script
#   Module Name:        celestialTwoBodyPoint
#   Author:             Mar Cols
#   Creation Date:      May 11, 2016
#

import os, inspect
import numpy as np
from numpy import linalg as la
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.simulation.alg_contain import alg_contain
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions
from Basilisk.fswAlgorithms.celestialTwoBodyPoint import celestialTwoBodyPoint  # module that is to be tested
from Basilisk.fswAlgorithms.cheby_pos_ephem import cheby_pos_ephem  # module that creates needed input
from Basilisk.utilities import macros
from Basilisk.utilities import astroFunctions as af
from Basilisk.utilities import RigidBodyKinematics as rbk


filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
textSnippetPassed = r'\textcolor{ForestGreen}{' + "PASSED" + '}'
textSnippetFailed = r'\textcolor{Red}{' + "Failed" + '}'


# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_

def computeCelestialTwoBodyPoint(R_P1, v_P1, a_P1, R_P2, v_P2, a_P2):

    # Beforehand computations
    R_n = np.cross(R_P1, R_P2)
    v_n = np.cross(v_P1, R_P2) + np.cross(R_P1, v_P2)
    a_n = np.cross(a_P1, R_P2) + np.cross(R_P1, a_P2) + 2 * np.cross(v_P1, v_P2)

    # Reference Frame generation
    r1_hat = R_P1/la.norm(R_P1)
    r3_hat = R_n/la.norm(R_n)
    r2_hat = np.cross(r3_hat, r1_hat)
    RN = np.array([r1_hat, r2_hat, r3_hat])
    sigma_RN = rbk.C2MRP(RN)

    # Reference base-vectors first time-derivative
    I_33 = np.identity(3)
    C1 = I_33 - np.outer(r1_hat, r1_hat)
    dr1_hat = 1.0 / la.norm(R_P1) * np.dot(C1, v_P1)
    C3 = I_33 - np.outer(r3_hat, r3_hat)
    dr3_hat = 1.0 / la.norm(R_n) * np.dot(C3, v_n)
    dr2_hat = np.cross(dr3_hat, r1_hat) + np.cross(r3_hat, dr1_hat)

    # Angular Velocity computation
    omega_RN_R = np.array([
        np.dot(r3_hat, dr2_hat),
        np.dot(r1_hat, dr3_hat),
        np.dot(r2_hat, dr1_hat)
    ])
    omega_RN_N = np.dot(RN.T, omega_RN_R)

    # Reference base-vectors second time-derivative
    temp33_1 = 2 * np.outer(dr1_hat, r1_hat) + np.outer(r1_hat, dr1_hat)
    ddr1_hat = 1.0 / la.norm(R_P1) * (np.dot(C1, a_P1) - np.dot(temp33_1, v_P1))
    temp33_3 = 2 * np.outer(dr3_hat, r3_hat) + np.outer(r3_hat, dr3_hat)
    ddr3_hat = 1.0 / la.norm(R_n) * (np.dot(C3, a_n) - np.dot(temp33_3, v_n))
    ddr2_hat = np.cross(ddr3_hat, r1_hat) + np.cross(ddr1_hat, r3_hat) + 2 * np.cross(dr3_hat, dr1_hat)

    # Angular Acceleration computation
    domega_RN_R = np.array([
        np.dot(dr3_hat, dr2_hat) + np.dot(r3_hat, ddr2_hat) - np.dot(omega_RN_R, dr1_hat),
        np.dot(dr1_hat, dr3_hat) + np.dot(r1_hat, ddr3_hat) - np.dot(omega_RN_R, dr2_hat),
        np.dot(dr2_hat, dr1_hat) + np.dot(r2_hat, ddr1_hat) - np.dot(omega_RN_R, dr3_hat)

    ])
    domega_RN_N = np.dot(RN.T, domega_RN_R)

    return sigma_RN, omega_RN_N, domega_RN_N

[docs]def test_celestialTwoBodyPoint(show_plots): """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = celestialTwoBodyPointTestFunction(show_plots) assert testResults < 1, testMessage [testResults, testMessage] = secBodyCelestialTwoBodyPointTestFunction(show_plots) assert testResults < 1, testMessage
def celestialTwoBodyPointTestFunction(show_plots): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # terminateSimulation() is needed if multiple unit test scripts are run # that run a simulation for the test. This creates a fresh and # consistent simulation environment for each test run. # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container moduleConfig = celestialTwoBodyPoint.celestialTwoBodyPointConfig() moduleWrap = alg_contain.AlgContain(moduleConfig, celestialTwoBodyPoint.Update_celestialTwoBodyPoint, celestialTwoBodyPoint.SelfInit_celestialTwoBodyPoint, celestialTwoBodyPoint.CrossInit_celestialTwoBodyPoint) moduleWrap.ModelTag = "celestialTwoBodyPoint" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig) # Initialize the test module configuration data moduleConfig.inputNavDataName = "inputNavDataName" moduleConfig.inputCelMessName = "inputCelMessName" #moduleConfig.inputSecMessName = "inputSecMessName" moduleConfig.outputDataName = "outputName" moduleConfig.singularityThresh = 1.0 * af.D2R # Previous Computation of Initial Conditions for the test a = af.E_radius * 2.8 e = 0.0 i = 0.0 Omega = 0.0 omega = 0.0 f = 60 * af.D2R (r, v) = af.OE2RV(af.mu_E, a, e, i, Omega, omega, f) r_BN_N = np.array([0., 0., 0.]) v_BN_N = np.array([0., 0., 0.]) celPositionVec = r celVelocityVec = v # Create input message and size it because the regular creator of that message # is not part of the test. # Navigation Input Message NavStateOutData = celestialTwoBodyPoint.NavTransIntMsg() # Create a structure for the input message inputNavMessageSize = NavStateOutData.getStructSize() unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.inputNavDataName, inputNavMessageSize, 2) NavStateOutData.r_BN_N = r_BN_N NavStateOutData.v_BN_N = v_BN_N unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputNavDataName, inputNavMessageSize, 0, NavStateOutData) # Spice Input Message of Primary Body CelBodyData = cheby_pos_ephem.EphemerisIntMsg() inputSpiceMessageSize = CelBodyData.getStructSize() # Size of SpicePlanetState unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.inputCelMessName, inputSpiceMessageSize, 2) CelBodyData.r_BdyZero_N = celPositionVec CelBodyData.v_BdyZero_N = celVelocityVec unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputCelMessName, inputSpiceMessageSize, 0, CelBodyData) # Setup logging on the test module output message so that we get all the writes to it unitTestSim.TotalSim.logThisMessage(moduleConfig.outputDataName, testProcessRate) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(macros.sec2nano(1.)) # seconds to stop simulation # Begin the simulation time run set above unitTestSim.ExecuteSimulation() ## Set truth values a = af.E_radius * 2.8 e = 0.0 i = 0.0 Omega = 0.0 omega = 0.0 f = 60 * af.D2R (r, v) = af.OE2RV(af.mu_E, a, e, i, Omega, omega, f) r_BN_N = np.array([0., 0., 0.]) v_BN_N = np.array([0., 0., 0.]) celPositionVec = r celVelocityVec = v # Begin Method R_P1 = celPositionVec - r_BN_N v_P1 = celVelocityVec - v_BN_N a_P1 = np.array([0., 0., 0.]) R_P2 = np.cross(R_P1, v_P1) v_P2 = np.cross(R_P1, a_P1) a_P2 = np.cross(v_P1, a_P1) sigma_RN, omega_RN_N, domega_RN_N = computeCelestialTwoBodyPoint(R_P1, v_P1, a_P1, R_P2, v_P2, a_P2) # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) # check sigma_RN moduleOutputName = "sigma_RN" moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName, list(range(3))) # compare the module results to the truth values accuracy = 1e-12 # check a vector values for i in range(0, len(moduleOutput)): if not unitTestSupport.isArrayEqual(moduleOutput[i], sigma_RN, 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " + moduleOutputName + " unit test at t=" + str(moduleOutput[i, 0] * macros.NANO2SEC) + "sec\n") unitTestSupport.writeTeXSnippet('passFail11', textSnippetFailed, path) else: unitTestSupport.writeTeXSnippet('passFail11', textSnippetPassed, path) # check omega_RN_N moduleOutputName = "omega_RN_N" moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName, list(range(3))) # compare the module results to the truth values # check a vector values for i in range(0, len(moduleOutput)): if not unitTestSupport.isArrayEqual(moduleOutput[i], omega_RN_N, 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " + moduleOutputName + " unit test at t=" + str(moduleOutput[i, 0] * macros.NANO2SEC) + "sec\n") unitTestSupport.writeTeXSnippet('passFail12', textSnippetFailed, path) else: unitTestSupport.writeTeXSnippet('passFail12', textSnippetPassed, path) # check domega_RN_N moduleOutputName = "domega_RN_N" moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName, list(range(3))) # compare the module results to the truth values # check a vector values for i in range(0, len(moduleOutput)): if not unitTestSupport.isArrayEqual(moduleOutput[i], domega_RN_N, 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " + moduleOutputName + " unit test at t=" + str(moduleOutput[i, 0] * macros.NANO2SEC) + "sec\n") unitTestSupport.writeTeXSnippet('passFail13', textSnippetFailed, path) else: unitTestSupport.writeTeXSnippet('passFail13', textSnippetPassed, path) return [testFailCount, ''.join(testMessages)] def secBodyCelestialTwoBodyPointTestFunction(show_plots): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # terminateSimulation() is needed if multiple unit test scripts are run # that run a simulation for the test. This creates a fresh and # consistent simulation environment for each test run. # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container moduleConfig = celestialTwoBodyPoint.celestialTwoBodyPointConfig() moduleWrap = alg_contain.AlgContain(moduleConfig, celestialTwoBodyPoint.Update_celestialTwoBodyPoint, celestialTwoBodyPoint.SelfInit_celestialTwoBodyPoint, celestialTwoBodyPoint.CrossInit_celestialTwoBodyPoint, celestialTwoBodyPoint.Reset_celestialTwoBodyPoint) moduleWrap.ModelTag = "secBodyCelestialTwoBodyPoint" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig) # Initialize the test module configuration data moduleConfig.inputNavDataName = "inputNavDataName" moduleConfig.inputCelMessName = "inputCelMessName" moduleConfig.inputSecMessName = "inputSecMessName" #moduleConfig.inputSecMessName = "inputSecMessName" moduleConfig.outputDataName = "outputName" moduleConfig.singularityThresh = 1.0 * af.D2R # Previous Computation of Initial Conditions for the test a = af.E_radius * 2.8 e = 0.0 i = 0.0 Omega = 0.0 omega = 0.0 f = 60 * af.D2R (r, v) = af.OE2RV(af.mu_E, a, e, i, Omega, omega, f) r_BN_N = np.array([0., 0., 0.]) v_BN_N = np.array([0., 0., 0.]) celPositionVec = r celVelocityVec = v # Create input message and size it because the regular creator of that message # is not part of the test. # Navigation Input Message NavStateOutData = celestialTwoBodyPoint.NavTransIntMsg() # Create a structure for the input message inputNavMessageSize = NavStateOutData.getStructSize() unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.inputNavDataName, inputNavMessageSize, 2) NavStateOutData.r_BN_N = r_BN_N NavStateOutData.v_BN_N = v_BN_N unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputNavDataName, inputNavMessageSize, 0, NavStateOutData) # Spice Input Message of Primary Body CelBodyData = cheby_pos_ephem.EphemerisIntMsg() inputSpiceMessageSize = CelBodyData.getStructSize() # Size of SpicePlanetState unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.inputCelMessName, inputSpiceMessageSize, 2) CelBodyData.r_BdyZero_N = celPositionVec CelBodyData.v_BdyZero_N = celVelocityVec unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputCelMessName, inputSpiceMessageSize, 0, CelBodyData) # Spice Input Message of Secondary Body unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.inputSecMessName, inputSpiceMessageSize, 2) # SecBodyData = spice_interface.SpicePlanetStateSimMsg() SecBodyData = cheby_pos_ephem.EphemerisIntMsg() secPositionVec = [500., 500., 500.] SecBodyData.r_BdyZero_N = secPositionVec # SecBodyData.PositionVector = secPositionVec secVelocityVec = [0., 0., 0.] SecBodyData.v_BdyZero_N = secVelocityVec # SecBodyData.VelocityVector = secVelocityVec unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputSecMessName, inputSpiceMessageSize, 0, SecBodyData) # Setup logging on the test module output message so that we get all the writes to it unitTestSim.TotalSim.logThisMessage(moduleConfig.outputDataName, testProcessRate) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(macros.sec2nano(1.)) # seconds to stop simulation # Begin the simulation time run set above unitTestSim.ExecuteSimulation() # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) # check sigma_RN moduleOutputName = "sigma_RN" moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName, list(range(3))) # set the filtered output truth states trueVector = [0.474475084038, 0.273938317493, 0.191443718765] # compare the module results to the truth values accuracy = 1e-12 unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path) for i in range(0, len(moduleOutput)): # check a vector values if not unitTestSupport.isArrayEqual(moduleOutput[i], trueVector, 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " + moduleOutputName + " unit test at t=" + str(moduleOutput[i, 0] * macros.NANO2SEC) + "sec\n") unitTestSupport.writeTeXSnippet('passFail21', textSnippetFailed, path) else: unitTestSupport.writeTeXSnippet('passFail21', textSnippetPassed, path) # check omega_RN_N moduleOutputName = "omega_RN_N" moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName, list(range(3))) # set the filtered output truth states trueVector = [1.59336987e-04, 2.75979758e-04, 2.64539877e-04] # compare the module results to the truth values for i in range(0, len(moduleOutput)): # check a vector values if not unitTestSupport.isArrayEqual(moduleOutput[i], trueVector, 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " + moduleOutputName + " unit test at t=" + str(moduleOutput[i, 0] * macros.NANO2SEC) + "sec\n") unitTestSupport.writeTeXSnippet('passFail22', textSnippetFailed, path) else: unitTestSupport.writeTeXSnippet('passFail22', textSnippetPassed, path) # check domega_RN_N moduleOutputName = "domega_RN_N" moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName, list(range(3))) # set the filtered output truth states trueVector = [-2.12284893e-07, 5.69968291e-08, -4.83648052e-08] # compare the module results to the truth values for i in range(0, len(moduleOutput)): # check a vector values if not unitTestSupport.isArrayEqual(moduleOutput[i], trueVector, 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " + moduleOutputName + " unit test at t=" + str(moduleOutput[i, 0] * macros.NANO2SEC) + "sec\n") unitTestSupport.writeTeXSnippet('passFail23', textSnippetFailed, path) else: unitTestSupport.writeTeXSnippet('passFail23', textSnippetPassed, path) # Note that we can continue to step the simulation however we feel like. # Just because we stop and query data does not mean everything has to stop for good unitTestSim.ConfigureStopTime(macros.sec2nano(0.6)) # run an additional 0.6 seconds unitTestSim.ExecuteSimulation() # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_celestialTwoBodyPoint(False)