''' '''
'''
ISC License
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
#
# Unit Test Script
# Module Name: celestialTwoBodyPoint
# Author: Mar Cols
# Creation Date: May 11, 2016
#
import os, inspect
import numpy as np
from numpy import linalg as la
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.simulation.alg_contain import alg_contain
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.fswAlgorithms.celestialTwoBodyPoint import celestialTwoBodyPoint # module that is to be tested
from Basilisk.fswAlgorithms.cheby_pos_ephem import cheby_pos_ephem # module that creates needed input
from Basilisk.utilities import macros
from Basilisk.utilities import astroFunctions as af
from Basilisk.utilities import RigidBodyKinematics as rbk
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
textSnippetPassed = r'\textcolor{ForestGreen}{' + "PASSED" + '}'
textSnippetFailed = r'\textcolor{Red}{' + "Failed" + '}'
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
def computeCelestialTwoBodyPoint(R_P1, v_P1, a_P1, R_P2, v_P2, a_P2):
# Beforehand computations
R_n = np.cross(R_P1, R_P2)
v_n = np.cross(v_P1, R_P2) + np.cross(R_P1, v_P2)
a_n = np.cross(a_P1, R_P2) + np.cross(R_P1, a_P2) + 2 * np.cross(v_P1, v_P2)
# Reference Frame generation
r1_hat = R_P1/la.norm(R_P1)
r3_hat = R_n/la.norm(R_n)
r2_hat = np.cross(r3_hat, r1_hat)
RN = np.array([r1_hat, r2_hat, r3_hat])
sigma_RN = rbk.C2MRP(RN)
# Reference base-vectors first time-derivative
I_33 = np.identity(3)
C1 = I_33 - np.outer(r1_hat, r1_hat)
dr1_hat = 1.0 / la.norm(R_P1) * np.dot(C1, v_P1)
C3 = I_33 - np.outer(r3_hat, r3_hat)
dr3_hat = 1.0 / la.norm(R_n) * np.dot(C3, v_n)
dr2_hat = np.cross(dr3_hat, r1_hat) + np.cross(r3_hat, dr1_hat)
# Angular Velocity computation
omega_RN_R = np.array([
np.dot(r3_hat, dr2_hat),
np.dot(r1_hat, dr3_hat),
np.dot(r2_hat, dr1_hat)
])
omega_RN_N = np.dot(RN.T, omega_RN_R)
# Reference base-vectors second time-derivative
temp33_1 = 2 * np.outer(dr1_hat, r1_hat) + np.outer(r1_hat, dr1_hat)
ddr1_hat = 1.0 / la.norm(R_P1) * (np.dot(C1, a_P1) - np.dot(temp33_1, v_P1))
temp33_3 = 2 * np.outer(dr3_hat, r3_hat) + np.outer(r3_hat, dr3_hat)
ddr3_hat = 1.0 / la.norm(R_n) * (np.dot(C3, a_n) - np.dot(temp33_3, v_n))
ddr2_hat = np.cross(ddr3_hat, r1_hat) + np.cross(ddr1_hat, r3_hat) + 2 * np.cross(dr3_hat, dr1_hat)
# Angular Acceleration computation
domega_RN_R = np.array([
np.dot(dr3_hat, dr2_hat) + np.dot(r3_hat, ddr2_hat) - np.dot(omega_RN_R, dr1_hat),
np.dot(dr1_hat, dr3_hat) + np.dot(r1_hat, ddr3_hat) - np.dot(omega_RN_R, dr2_hat),
np.dot(dr2_hat, dr1_hat) + np.dot(r2_hat, ddr1_hat) - np.dot(omega_RN_R, dr3_hat)
])
domega_RN_N = np.dot(RN.T, domega_RN_R)
return sigma_RN, omega_RN_N, domega_RN_N
[docs]def test_celestialTwoBodyPoint(show_plots):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = celestialTwoBodyPointTestFunction(show_plots)
assert testResults < 1, testMessage
[testResults, testMessage] = secBodyCelestialTwoBodyPointTestFunction(show_plots)
assert testResults < 1, testMessage
def celestialTwoBodyPointTestFunction(show_plots):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# terminateSimulation() is needed if multiple unit test scripts are run
# that run a simulation for the test. This creates a fresh and
# consistent simulation environment for each test run.
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
moduleConfig = celestialTwoBodyPoint.celestialTwoBodyPointConfig()
moduleWrap = alg_contain.AlgContain(moduleConfig,
celestialTwoBodyPoint.Update_celestialTwoBodyPoint,
celestialTwoBodyPoint.SelfInit_celestialTwoBodyPoint,
celestialTwoBodyPoint.CrossInit_celestialTwoBodyPoint)
moduleWrap.ModelTag = "celestialTwoBodyPoint"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
# Initialize the test module configuration data
moduleConfig.inputNavDataName = "inputNavDataName"
moduleConfig.inputCelMessName = "inputCelMessName"
#moduleConfig.inputSecMessName = "inputSecMessName"
moduleConfig.outputDataName = "outputName"
moduleConfig.singularityThresh = 1.0 * af.D2R
# Previous Computation of Initial Conditions for the test
a = af.E_radius * 2.8
e = 0.0
i = 0.0
Omega = 0.0
omega = 0.0
f = 60 * af.D2R
(r, v) = af.OE2RV(af.mu_E, a, e, i, Omega, omega, f)
r_BN_N = np.array([0., 0., 0.])
v_BN_N = np.array([0., 0., 0.])
celPositionVec = r
celVelocityVec = v
# Create input message and size it because the regular creator of that message
# is not part of the test.
# Navigation Input Message
NavStateOutData = celestialTwoBodyPoint.NavTransIntMsg() # Create a structure for the input message
inputNavMessageSize = NavStateOutData.getStructSize()
unitTestSim.TotalSim.CreateNewMessage(unitProcessName,
moduleConfig.inputNavDataName,
inputNavMessageSize, 2)
NavStateOutData.r_BN_N = r_BN_N
NavStateOutData.v_BN_N = v_BN_N
unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputNavDataName,
inputNavMessageSize,
0, NavStateOutData)
# Spice Input Message of Primary Body
CelBodyData = cheby_pos_ephem.EphemerisIntMsg()
inputSpiceMessageSize = CelBodyData.getStructSize() # Size of SpicePlanetState
unitTestSim.TotalSim.CreateNewMessage(unitProcessName,
moduleConfig.inputCelMessName,
inputSpiceMessageSize, 2)
CelBodyData.r_BdyZero_N = celPositionVec
CelBodyData.v_BdyZero_N = celVelocityVec
unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputCelMessName,
inputSpiceMessageSize,
0, CelBodyData)
# Setup logging on the test module output message so that we get all the writes to it
unitTestSim.TotalSim.logThisMessage(moduleConfig.outputDataName, testProcessRate)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(1.)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
## Set truth values
a = af.E_radius * 2.8
e = 0.0
i = 0.0
Omega = 0.0
omega = 0.0
f = 60 * af.D2R
(r, v) = af.OE2RV(af.mu_E, a, e, i, Omega, omega, f)
r_BN_N = np.array([0., 0., 0.])
v_BN_N = np.array([0., 0., 0.])
celPositionVec = r
celVelocityVec = v
# Begin Method
R_P1 = celPositionVec - r_BN_N
v_P1 = celVelocityVec - v_BN_N
a_P1 = np.array([0., 0., 0.])
R_P2 = np.cross(R_P1, v_P1)
v_P2 = np.cross(R_P1, a_P1)
a_P2 = np.cross(v_P1, a_P1)
sigma_RN, omega_RN_N, domega_RN_N = computeCelestialTwoBodyPoint(R_P1, v_P1, a_P1, R_P2, v_P2, a_P2)
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
# check sigma_RN
moduleOutputName = "sigma_RN"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName,
list(range(3)))
# compare the module results to the truth values
accuracy = 1e-12
# check a vector values
for i in range(0, len(moduleOutput)):
if not unitTestSupport.isArrayEqual(moduleOutput[i], sigma_RN, 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " +
moduleOutputName + " unit test at t=" +
str(moduleOutput[i, 0] * macros.NANO2SEC) +
"sec\n")
unitTestSupport.writeTeXSnippet('passFail11', textSnippetFailed, path)
else:
unitTestSupport.writeTeXSnippet('passFail11', textSnippetPassed, path)
# check omega_RN_N
moduleOutputName = "omega_RN_N"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName,
list(range(3)))
# compare the module results to the truth values
# check a vector values
for i in range(0, len(moduleOutput)):
if not unitTestSupport.isArrayEqual(moduleOutput[i], omega_RN_N, 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " +
moduleOutputName + " unit test at t=" +
str(moduleOutput[i, 0] * macros.NANO2SEC) +
"sec\n")
unitTestSupport.writeTeXSnippet('passFail12', textSnippetFailed, path)
else:
unitTestSupport.writeTeXSnippet('passFail12', textSnippetPassed, path)
# check domega_RN_N
moduleOutputName = "domega_RN_N"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName,
list(range(3)))
# compare the module results to the truth values
# check a vector values
for i in range(0, len(moduleOutput)):
if not unitTestSupport.isArrayEqual(moduleOutput[i], domega_RN_N, 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " +
moduleOutputName + " unit test at t=" +
str(moduleOutput[i, 0] * macros.NANO2SEC) +
"sec\n")
unitTestSupport.writeTeXSnippet('passFail13', textSnippetFailed, path)
else:
unitTestSupport.writeTeXSnippet('passFail13', textSnippetPassed, path)
return [testFailCount, ''.join(testMessages)]
def secBodyCelestialTwoBodyPointTestFunction(show_plots):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# terminateSimulation() is needed if multiple unit test scripts are run
# that run a simulation for the test. This creates a fresh and
# consistent simulation environment for each test run.
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
moduleConfig = celestialTwoBodyPoint.celestialTwoBodyPointConfig()
moduleWrap = alg_contain.AlgContain(moduleConfig,
celestialTwoBodyPoint.Update_celestialTwoBodyPoint,
celestialTwoBodyPoint.SelfInit_celestialTwoBodyPoint,
celestialTwoBodyPoint.CrossInit_celestialTwoBodyPoint,
celestialTwoBodyPoint.Reset_celestialTwoBodyPoint)
moduleWrap.ModelTag = "secBodyCelestialTwoBodyPoint"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
# Initialize the test module configuration data
moduleConfig.inputNavDataName = "inputNavDataName"
moduleConfig.inputCelMessName = "inputCelMessName"
moduleConfig.inputSecMessName = "inputSecMessName"
#moduleConfig.inputSecMessName = "inputSecMessName"
moduleConfig.outputDataName = "outputName"
moduleConfig.singularityThresh = 1.0 * af.D2R
# Previous Computation of Initial Conditions for the test
a = af.E_radius * 2.8
e = 0.0
i = 0.0
Omega = 0.0
omega = 0.0
f = 60 * af.D2R
(r, v) = af.OE2RV(af.mu_E, a, e, i, Omega, omega, f)
r_BN_N = np.array([0., 0., 0.])
v_BN_N = np.array([0., 0., 0.])
celPositionVec = r
celVelocityVec = v
# Create input message and size it because the regular creator of that message
# is not part of the test.
# Navigation Input Message
NavStateOutData = celestialTwoBodyPoint.NavTransIntMsg() # Create a structure for the input message
inputNavMessageSize = NavStateOutData.getStructSize()
unitTestSim.TotalSim.CreateNewMessage(unitProcessName,
moduleConfig.inputNavDataName,
inputNavMessageSize, 2)
NavStateOutData.r_BN_N = r_BN_N
NavStateOutData.v_BN_N = v_BN_N
unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputNavDataName,
inputNavMessageSize,
0, NavStateOutData)
# Spice Input Message of Primary Body
CelBodyData = cheby_pos_ephem.EphemerisIntMsg()
inputSpiceMessageSize = CelBodyData.getStructSize() # Size of SpicePlanetState
unitTestSim.TotalSim.CreateNewMessage(unitProcessName,
moduleConfig.inputCelMessName,
inputSpiceMessageSize, 2)
CelBodyData.r_BdyZero_N = celPositionVec
CelBodyData.v_BdyZero_N = celVelocityVec
unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputCelMessName,
inputSpiceMessageSize,
0, CelBodyData)
# Spice Input Message of Secondary Body
unitTestSim.TotalSim.CreateNewMessage(unitProcessName,
moduleConfig.inputSecMessName,
inputSpiceMessageSize, 2)
# SecBodyData = spice_interface.SpicePlanetStateSimMsg()
SecBodyData = cheby_pos_ephem.EphemerisIntMsg()
secPositionVec = [500., 500., 500.]
SecBodyData.r_BdyZero_N = secPositionVec
# SecBodyData.PositionVector = secPositionVec
secVelocityVec = [0., 0., 0.]
SecBodyData.v_BdyZero_N = secVelocityVec
# SecBodyData.VelocityVector = secVelocityVec
unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputSecMessName,
inputSpiceMessageSize,
0, SecBodyData)
# Setup logging on the test module output message so that we get all the writes to it
unitTestSim.TotalSim.logThisMessage(moduleConfig.outputDataName, testProcessRate)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(1.)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
# check sigma_RN
moduleOutputName = "sigma_RN"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName,
list(range(3)))
# set the filtered output truth states
trueVector = [0.474475084038, 0.273938317493, 0.191443718765]
# compare the module results to the truth values
accuracy = 1e-12
unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path)
for i in range(0, len(moduleOutput)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i], trueVector, 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " +
moduleOutputName + " unit test at t=" +
str(moduleOutput[i, 0] * macros.NANO2SEC) +
"sec\n")
unitTestSupport.writeTeXSnippet('passFail21', textSnippetFailed, path)
else:
unitTestSupport.writeTeXSnippet('passFail21', textSnippetPassed, path)
# check omega_RN_N
moduleOutputName = "omega_RN_N"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName,
list(range(3)))
# set the filtered output truth states
trueVector = [1.59336987e-04, 2.75979758e-04, 2.64539877e-04]
# compare the module results to the truth values
for i in range(0, len(moduleOutput)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i], trueVector, 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " +
moduleOutputName + " unit test at t=" +
str(moduleOutput[i, 0] * macros.NANO2SEC) +
"sec\n")
unitTestSupport.writeTeXSnippet('passFail22', textSnippetFailed, path)
else:
unitTestSupport.writeTeXSnippet('passFail22', textSnippetPassed, path)
# check domega_RN_N
moduleOutputName = "domega_RN_N"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName,
list(range(3)))
# set the filtered output truth states
trueVector = [-2.12284893e-07, 5.69968291e-08, -4.83648052e-08]
# compare the module results to the truth values
for i in range(0, len(moduleOutput)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i], trueVector, 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " +
moduleOutputName + " unit test at t=" +
str(moduleOutput[i, 0] * macros.NANO2SEC) +
"sec\n")
unitTestSupport.writeTeXSnippet('passFail23', textSnippetFailed, path)
else:
unitTestSupport.writeTeXSnippet('passFail23', textSnippetPassed, path)
# Note that we can continue to step the simulation however we feel like.
# Just because we stop and query data does not mean everything has to stop for good
unitTestSim.ConfigureStopTime(macros.sec2nano(0.6)) # run an additional 0.6 seconds
unitTestSim.ExecuteSimulation()
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_celestialTwoBodyPoint(False)