''' '''
'''
ISC License
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
#
# Bore Angle Calculation Test
#
# Purpose: Test the proper function of the ore Angle Calculation module.
# Proper function is tested by
#
# Author: Rachel Mamich
# Creation Date: Jun. 30, 2017
#
# @cond DOXYGEN_IGNORE
from Basilisk.utilities import SimulationBaseClass
from Basilisk.simulation import bore_ang_calc
from Basilisk.utilities import macros
from Basilisk.utilities import RigidBodyKinematics
from Basilisk.simulation import spice_interface
from Basilisk.simulation import spacecraftPlus
from Basilisk.utilities import unitTestSupport
import pytest
import numpy
import os
# @endcond
path = os.path.dirname(os.path.abspath(__file__))
class ResultsStore:
def __init__(self):
self.PassFail = []
def texSnippet(self):
for i in range(len(self.PassFail)):
snippetName = 'Result' + str(i)
if self.PassFail[i] == 'PASSED':
textColor = 'ForestGreen'
elif self.PassFail[i] == 'FAILED':
textColor = 'Red'
texSnippet = r'\textcolor{' + textColor + '}{'+ self.PassFail[i] + '}'
unitTestSupport.writeTeXSnippet(snippetName, texSnippet, path)
@pytest.fixture(scope="module")
def testFixture():
listRes = ResultsStore()
yield listRes
listRes.texSnippet()
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(True)
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test.
[docs]@pytest.mark.parametrize("boresightLoc, eulerLoc",
[([1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]),
([-1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]),
([1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]),
([-1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]),
([1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]),
([-1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]),
([1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]),
([-1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3), -1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0]),
([0.0, 0.0, 1.0], [numpy.pi / 4, numpy.pi / 4, 0.0]),
([0.0, 0.0, 1.0], [3 * numpy.pi / 4, numpy.pi / 4, 0.0]),
([0.0, 0.0, 1.0], [5 * numpy.pi / 4, numpy.pi / 4, 0.0]),
([0.0, 0.0, 1.0], [-numpy.pi / 4, numpy.pi / 4, 0.0]),
([0.0, 0.0, 1.0], [numpy.pi / 4, -numpy.pi / 4, 0.0]),
([0.0, 0.0, 1.0], [3 * numpy.pi / 4, -numpy.pi / 4, 0.0]),
([0.0, 0.0, 1.0], [5 * numpy.pi / 4, -numpy.pi / 4, 0.0]),
([0.0, 0.0, 1.0], [-numpy.pi / 4, -numpy.pi / 4, 0.0]),
([1.0, 0.0, 0.0], [0.0, 0.0, 0.0])])
# # provide a unique test method name, starting with test_
def test_bore_ang_calc(testFixture, show_plots, boresightLoc, eulerLoc):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = bore_ang_calc_func(testFixture, show_plots, boresightLoc, eulerLoc)
assert testResults < 1, testMessage
# Run unit test
def bore_ang_calc_func(testFixture, show_plots, boresightLoc, eulerLoc):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
# Create a sim module as an empty container
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
TotalSim = SimulationBaseClass.SimBaseClass()
DynUnitTestProc = TotalSim.CreateNewProcess(unitProcessName)
# create the dynamics task and specify the integration update time
DynUnitTestProc.addTask(TotalSim.CreateNewTask(unitTaskName, macros.sec2nano(1.0)))
spiceMessage = spice_interface.SpicePlanetStateSimMsg()
stateMessage = spacecraftPlus.SCPlusStatesSimMsg()
angMessage = bore_ang_calc.AngOffValuesSimMsg()
vehPosition = [10000.0, 0.0, 0.0]
sunPosition = [10000.0, 1000.0, 0.0]
stateMessage.r_BN_N = vehPosition
stateMessage.v_BN_N = [-365052.0511, 0.0, 0.0]
if eulerLoc[0] == 0.0:
stateMessage.sigma_BN = [0.0, 0.0, 0.0]
else:
stateMessage.sigma_BN = RigidBodyKinematics.euler3212MRP(eulerLoc)
spiceMessage.PositionVector = sunPosition
spiceMessage.PlanetName = "sun"
# Inertial State output Message
inputMessageSize = stateMessage.getStructSize()
TotalSim.TotalSim.CreateNewMessage(unitProcessName,
"inertial_state_output",
inputMessageSize,
2) # number of buffers (leave at 2 as default, don't make zero)
TotalSim.TotalSim.WriteMessageData("inertial_state_output",
inputMessageSize,
0,
stateMessage)
# Sun Planet Data Message
inputMessageSize = spiceMessage.getStructSize()
TotalSim.TotalSim.CreateNewMessage(unitProcessName,
"sun_planet_data",
inputMessageSize,
2) # number of buffers (leave at 2 as default, don't make zero)
TotalSim.TotalSim.WriteMessageData("sun_planet_data",
inputMessageSize,
0,
spiceMessage)
# Initialize the spice modules that we are using.
BACObject = bore_ang_calc.BoreAngCalc()
BACObject.ModelTag = "solarArrayBoresight"
BACObject.StateString = "inertial_state_output"
BACObject.celBodyString = "sun_planet_data"
BACObject.OutputDataString = "solar_array_sun_bore"
BACObject.boreVec_B = boresightLoc # boresight in body frame
TotalSim.AddModelToTask(unitTaskName, BACObject)
#
# Configure simulation
TotalSim.ConfigureStopTime(int(1.0 * 1E9))
TotalSim.TotalSim.logThisMessage(BACObject.OutputDataString)
# Execute simulation
TotalSim.InitializeSimulation()
TotalSim.AddVariableForLogging(BACObject.ModelTag + ".boreVecPoint", 1, 0, 2, "double")
TotalSim.ExecuteSimulation()
###################################################################################################################
#
# Begin testing module results to truth values
simMiss = TotalSim.pullMessageLogData(BACObject.OutputDataString + '.missAngle', list(range(1)))
simAz = TotalSim.pullMessageLogData(BACObject.OutputDataString + '.azimuth', list(range(1)))
simBoreVecPt = TotalSim.GetLogVariableData(BACObject.ModelTag + ".boreVecPoint")
# Truth values
dcm_BN = RigidBodyKinematics.MRP2C(stateMessage.sigma_BN)
relPosVector = numpy.subtract(spiceMessage.PositionVector, stateMessage.r_BN_N)
relVelVector = numpy.subtract(spiceMessage.VelocityVector, stateMessage.v_BN_N)
magRelVelVec = numpy.sqrt(relVelVector[0] ** 2 + relVelVector[1] ** 2 + relVelVector[2] ** 2)
if magRelVelVec == 0:
secPointVector = numpy.zeros((1, 3))
magSecPtVec = 0
else:
secPointVector = numpy.cross(relPosVector, relVelVector) / numpy.linalg.norm(numpy.cross(relPosVector,
relVelVector))
magSecPtVec = 1
primPointVector = relPosVector / numpy.linalg.norm(relPosVector) # r_p/b_N
dcm_PoN = numpy.zeros((3, 3))
dcm_PoN[0, 0:2] = primPointVector[0:2]
magPrimPtVec = numpy.sqrt(primPointVector[0] ** 2 + primPointVector[1] ** 2 + primPointVector[2] ** 2)
if magPrimPtVec != 0 and magSecPtVec != 0:
dcm_PoN_2 = numpy.cross(primPointVector, secPointVector) / numpy.linalg.norm(
numpy.cross(primPointVector, secPointVector))
for i in range(3):
dcm_PoN[2, i] = dcm_PoN_2[i]
dcm_PoN_1 = numpy.cross(dcm_PoN_2, primPointVector)
for i in range(3):
dcm_PoN[1, i] = dcm_PoN_1[i]
dcm_BPo = numpy.dot(dcm_BN, dcm_PoN.transpose())
vecBore_B = numpy.zeros((3, 1))
for i in range(3):
vecBore_B[i, 0] = BACObject.boreVec_B[i]
boreVecPoint = numpy.dot(numpy.transpose(dcm_BPo), vecBore_B)
boreVecPoint_1 = []
for i in range(3):
boreVecPoint_1.append(boreVecPoint[i, 0])
boreVecPoint_1 = numpy.array(boreVecPoint_1)
####################################################################################################################
# attempt calculation in body frame
r_B = numpy.dot(dcm_BN, stateMessage.r_BN_N) # BN * N = B
# Set tolersnce
AllowTolerance = 1E-10
boreVecPoint_final = [boreVecPoint_1]
simBoreVecPt_final = [simBoreVecPt[0]]
testFailCount, testMessages = unitTestSupport.compareArray(boreVecPoint_final, simBoreVecPt_final, AllowTolerance,
"FAILED: Calculating the vector boreVecPoint.",
testFailCount, testMessages)
# Truth values
#boreVecPoint_1 = [0.0, 1.0, 0.0]
baselinePoint = [1.0, 0.0, 0.0]
baselinePoint = numpy.array(baselinePoint)
dotValue = numpy.dot(boreVecPoint_1, baselinePoint)
r_N = numpy.dot(numpy.transpose(dcm_BN), BACObject.boreVec_B)
baselineProj = numpy.dot(numpy.transpose(dcm_PoN), baselinePoint)
dotValue_2 = numpy.dot(r_N, baselineProj)
boresightMissAng = numpy.arccos(dotValue)
boresightMissAng_2 = numpy.arccos(dotValue_2) # boresight calc using body frame
if boresightMissAng == numpy.pi / 2:
simAz_final = numpy.array(simAz[-1])
boresightAzimuth = simAz_final[-1]
print("The miss angle is 0, therefore the miss angle is ill defined!")
else:
boresightAzimuth = numpy.arctan2(boreVecPoint_1[2], boreVecPoint_1[1])
# Next Check
AllowTolerance = 1E-10
simMiss_final = numpy.array(simMiss[-1])
if (boresightMissAng - simMiss_final[
-1]) > AllowTolerance: # Skip test days that are Sunday because of the end of a GPS week
testFailCount += 1
testMessages.append(
"FAILED: Calculating the miss angle of the boresight failed with difference of: %(DiffVal)f \n" % \
{"DiffVal": boresightMissAng - simMiss_final[-1]})
simAz_final = numpy.array(simAz[-1])
if (boresightAzimuth - simAz_final[-1]) > AllowTolerance: # Skip test days that are Sunday because of the end of a GPS week
testFailCount += 1
testMessages.append(
"FAILED: Calculating the azimuth angle of the boresight failed with difference of: %(DiffVal)f \n" % \
{"DiffVal": boresightAzimuth - simAz_final[-1]})
# print out success message if no error were found
if testFailCount == 0:
print("PASSED")
testFixture.PassFail.append("PASSED")
else:
testFixture.PassFail.append("FAILED")
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
# This statement below ensures that the unit test scrip can be run as a
# stand-along python script
#
if __name__ == "__main__":
bore_ang_calc_func(ResultsStore(), False, # show_plots
[1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3), 1.0 / numpy.sqrt(3)], [0.0, 0.0, 0.0])