Source code for test_atmoDrag

'''
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder

 Permission to use, copy, modify, and/or distribute this software for any
 purpose with or without fee is hereby granted, provided that the above
 copyright notice and this permission notice appear in all copies.

 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''

#
# Basilisk Scenario Script and Integrated Test
#
# Purpose:  Test the validity of a simple exponential atmosphere model.
# Author:   Andrew Harris
# Creation Date:  Jan 18, 2017
#

import sys, os, inspect
import numpy as np
import math
import csv
import logging


# import general simulation support files
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport                  # general support file with common unit test functions
import matplotlib.pyplot as plt
from Basilisk.utilities import macros
from Basilisk.utilities import orbitalMotion

# import simulation related support
from Basilisk.simulation import spacecraftPlus
from Basilisk.utilities import simIncludeGravBody
from Basilisk.simulation import exponentialAtmosphere, simple_nav
from Basilisk.utilities import unitTestSupport, RigidBodyKinematics
#print dir(exponentialAtmosphere)
from Basilisk.simulation import dragDynamicEffector

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))


# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(True, reason="Previously set sim parameters are not consistent with new formulation\n")

# The following 'parametrize' function decorator provides the parameters and expected results for each
#   of the multiple test runs for this test.

# provide a unique test method name, starting with test_
[docs]def test_scenarioDragOrbit(): '''This function is called by the py.test environment.''' # each test method requires a single assert method to be called earthCase = "Earth" marsCase = "Mars" orb1 = "LPO" orb2 = "LTO" showVal = False testResults = [] testMessage = [] [leoResults, leoMessages] = run( showVal, orb1, earthCase) #[gtoResults, gtoMessages] = run( # showVal, orb2, earthCase) #[lmoResults, lmoMessages] = run( #showVal, orb1, marsCase) #[mtoResults, mtoMessages] = run( #showVal, orb2, marsCase) testResults = leoResults#+gtoResults#+lmoResults+mtoResults testMessage.append(leoMessages) #testMessage.append(gtoMessages) ##testMessage.append(lmoMessages) #testMessage.append(mtoMessages) assert testResults < 1, testMessage
def expAtmoComp(alt, baseDens, scaleHeight): dens = baseDens * math.exp(-alt/scaleHeight) return dens def cannonballDragComp(dragCoeff, dens, area, vel, att): dragDir_N = -vel / np.linalg.norm(vel) dcm_BN = RigidBodyKinematics.MRP2C(att) dragDir_B = dcm_BN.dot(dragDir_N) dragForce = 0.5 * dragCoeff * dens * area * np.linalg.norm(vel)**2.0 * dragDir_B return dragForce
[docs]def run(show_plots, orbitCase, planetCase): '''Call this routine directly to run the tutorial scenario.''' testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages # Create simulation variable names simTaskName = "simTask" simProcessName = "simProcess" # Create a sim module as an empty container scSim = SimulationBaseClass.SimBaseClass() # create the simulation process dynProcess = scSim.CreateNewProcess(simProcessName) # create the dynamics task and specify the integration update time simulationTimeStep = macros.sec2nano(1.0) dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep)) # Initialize new atmosphere and drag model, add them to task newAtmo = exponentialAtmosphere.ExponentialAtmosphere() atmoTaskName = "atmosphere" newAtmo.ModelTag = "ExpAtmo" projArea = 10.0 # Set drag area in m^2 dragCoeff = 2.2 # Set drag ceofficient dragEffector = dragDynamicEffector.DragDynamicEffector() dragEffector.ModelTag = "DragEff" dragEffectorTaskName = "drag" dragEffector.coreParams.projectedArea = projArea dragEffector.coreParams.dragCoeff = dragCoeff dragEffector.coreParams.comOffset = [1., 0., 0.] dragEffector.navAttInMsgName = 'nav_att_out' dynProcess.addTask(scSim.CreateNewTask(atmoTaskName, simulationTimeStep)) dynProcess.addTask(scSim.CreateNewTask(dragEffectorTaskName, simulationTimeStep)) scSim.AddModelToTask(atmoTaskName, newAtmo) # # setup the simulation tasks/objects # # initialize spacecraftPlus object and set properties scObject = spacecraftPlus.SpacecraftPlus() scObject.ModelTag = "spacecraftBody" simpleNavObj = simple_nav.SimpleNav() simpleNavObj.inputStateName = scObject.scStateOutMsgName simpleNavObj.outputAttName = 'nav_att_out' scSim.AddModelToTask(simTaskName, simpleNavObj) scObject.addDynamicEffector(dragEffector) # add spacecraftPlus object to the simulation process scSim.AddModelToTask(simTaskName, scObject) scSim.AddModelToTask(dragEffectorTaskName, dragEffector) # clear prior gravitational body and SPICE setup definitions gravFactory = simIncludeGravBody.gravBodyFactory() newAtmo.addSpacecraftToModel(scObject.scStateOutMsgName) dragEffector.setDensityMessage(newAtmo.envOutMsgNames[-1]) if planetCase == "Earth": planet = gravFactory.createEarth() elif planetCase == "Mars": planet = gravFactory.createMars() planet.isCentralBody = True # ensure this is the central gravitational body mu = planet.mu # attach gravity model to spaceCraftPlus scObject.gravField.gravBodies = spacecraftPlus.GravBodyVector(list(gravFactory.gravBodies.values())) # # setup orbit and simulation time oe = orbitalMotion.ClassicElements() if planetCase == "Earth": r_eq = 6371*1000.0 refBaseDens = 1.217 refScaleHeight = 8500.0 elif planetCase == "Mars": refBaseDens = 0.020 refScaleHeight = 11100.0 r_eq = 3389.5 * 1000.0 else: return 1, "Test failed- did not initialize planets." if orbitCase == "LPO": orbAltMin = 300.0*1000.0 orbAltMax = orbAltMin elif orbitCase == "LTO": orbAltMin = 300*1000.0 orbAltMax = 800.0 * 1000.0 newAtmo.planetRadius = r_eq newAtmo.scaleHeight = refScaleHeight newAtmo.baseDensity = refBaseDens rMin = r_eq + orbAltMin rMax = r_eq + orbAltMax oe.a = (rMin+rMax)/2.0 oe.e = 1.0 - rMin/oe.a oe.i = 0.0*macros.D2R oe.Omega = 0.0*macros.D2R oe.omega = 0.0*macros.D2R oe.f = 0.0*macros.D2R rN, vN = orbitalMotion.elem2rv(mu, oe) oe = orbitalMotion.rv2elem(mu, rN, vN) # this stores consistent initial orbit elements # with circular or equatorial orbit, some angles are # arbitrary # set the simulation time n = np.sqrt(mu/oe.a/oe.a/oe.a) P = 2.*np.pi/n simulationTime = macros.sec2nano(1*P) # # Setup data logging before the simulation is initialized # numDataPoints = 100 samplingTime = simulationTime // (numDataPoints-1) scSim.TotalSim.logThisMessage(scObject.scStateOutMsgName, samplingTime) scSim.TotalSim.logThisMessage(newAtmo.envOutMsgNames[-1], samplingTime) scSim.TotalSim.logThisMessage(simpleNavObj.outputAttName, samplingTime) scSim.AddVariableForLogging('DragEff.forceExternal_B', samplingTime, StartIndex=0, StopIndex=2) # # initialize Spacecraft States with initialization variables # scObject.hub.r_CN_NInit = unitTestSupport.np2EigenVectorXd(rN) # m - r_CN_N scObject.hub.v_CN_NInit = unitTestSupport.np2EigenVectorXd(vN) # m - v_CN_N # # initialize Simulation # scSim.InitializeSimulation() # # configure a simulation stop time time and execute the simulation run # scSim.ConfigureStopTime(simulationTime) scSim.ExecuteSimulation() # # retrieve the logged data # posData = scSim.pullMessageLogData(scObject.scStateOutMsgName+'.r_BN_N',list(range(3))) velData = scSim.pullMessageLogData(scObject.scStateOutMsgName+'.v_BN_N',list(range(3))) attData = scSim.pullMessageLogData(scObject.scStateOutMsgName+'.sigma_BN', list(range(3))) dragForce = scSim.GetLogVariableData('DragEff.forceExternal_B') densData = scSim.pullMessageLogData(newAtmo.envOutMsgNames[-1]+'.neutralDensity') np.set_printoptions(precision=16) # Compare to expected values endInd = dragForce.shape[0] refDragForce = np.zeros([endInd,3]) refDensData = np.zeros([endInd,1]) accuracy = 1e-13 # print planetCase # print orbitCase for ind in range(0, endInd-1): # print "Position data:", posData[ind,1:] # print "Velocity data:", velData[ind,1:] # print "Density data:", densData[ind,1] refDragForce[ind,:] = cannonballDragComp(dragCoeff,densData[ind,1],projArea,velData[ind,1:], attData[ind,1:]) # print "Reference drag data:", refDragForce[ind,:] # print "Drag Data:", dragForce[ind,1:] # print "" # check a vector values for ind in range(1,endInd-1): if not unitTestSupport.isArrayEqual(dragForce[ind,:], refDragForce[ind,:],3,accuracy): testFailCount += 1 testMessages.append( "FAILED: DragEffector failed force unit test at =" + str(densData[ind, 0] * macros.NANO2SEC) + "sec with a value difference of "+str(np.linalg.norm(dragForce[ind,1:]-refDragForce[ind,:]))) # # plot the results # if show_plots: plt.close("all") # clears out plots from earlier test runs # draw the inertial position vector components plt.figure(1) fig = plt.gcf() ax = fig.gca() ax.ticklabel_format(useOffset=False, style='plain') for idx in range(1,4): plt.plot(posData[:, 0]*macros.NANO2SEC/P, posData[:, idx]/1000., color=unitTestSupport.getLineColor(idx,3), label='$r_{BN,'+str(idx)+'}$') plt.legend(loc='lower right') plt.xlabel('Time [orbits]') plt.ylabel('Inertial Position [km]') # draw orbit in perifocal frame b = oe.a*np.sqrt(1-oe.e*oe.e) p = oe.a*(1-oe.e*oe.e) plt.figure(2,figsize=np.array((1.0, b/oe.a))*4.75,dpi=100) plt.axis(np.array([-oe.rApoap, oe.rPeriap, -b, b])/1000*1.25) # draw the planet fig = plt.gcf() ax = fig.gca() planetColor= '#008800' planetRadius = planet.radEquator/1000 ax.add_artist(plt.Circle((0, 0), planetRadius, color=planetColor)) # draw the actual orbit rData=[] fData=[] for idx in range(0,len(posData)): oeData = orbitalMotion.rv2elem(mu,posData[idx,1:4],velData[idx,1:4]) rData.append(oeData.rmag) fData.append(oeData.f + oeData.omega - oe.omega) plt.plot(rData*np.cos(fData)/1000, rData*np.sin(fData)/1000 ,color='#aa0000' ,linewidth = 3.0 ) # draw the full osculating orbit from the initial conditions fData = np.linspace(0,2*np.pi,100) rData = [] for idx in range(0,len(fData)): rData.append(p/(1+oe.e*np.cos(fData[idx]))) plt.plot(rData*np.cos(fData)/1000, rData*np.sin(fData)/1000 ,'--' , color='#555555' ) plt.xlabel('$i_e$ Cord. [km]') plt.ylabel('$i_p$ Cord. [km]') plt.grid() plt.figure() fig = plt.gcf() ax = fig.gca() ax.ticklabel_format(useOffset=False, style='plain') smaData = [] for idx in range(0, len(posData)): oeData = orbitalMotion.rv2elem(mu, posData[idx, 1:4], velData[idx, 1:4]) smaData.append(oeData.a/1000.) plt.plot(posData[:, 0]*macros.NANO2SEC/P, smaData ,color='#aa0000', ) plt.xlabel('Time [orbits]') plt.ylabel('SMA [km]') plt.figure() fig = plt.gcf() ax = fig.gca() ax.ticklabel_format(useOffset=False, style='sci') plt.plot( densData[:,0]*macros.NANO2SEC, densData[:,1]) plt.title('Density Data vs. Time') plt.xlabel('Time') plt.ylabel('Density in kg/m^3') plt.show() plt.close("all") if testFailCount == 0: print("PASSED: " + dragEffector.ModelTag) else: print("Failed: " + dragEffector.ModelTag) return testFailCount, testMessages
# close the plots being saved off to avoid over-writing old and new figures if __name__ == '__main__': run(True,"LPO","Earth")