Source code for test_SunLineSuKF

''' '''
'''
 ISC License

 Copyright (c) 2016-2018, Autonomous Vehicle Systems Lab, University of Colorado at Boulder

 Permission to use, copy, modify, and/or distribute this software for any
 purpose with or without fee is hereby granted, provided that the above
 copyright notice and this permission notice appear in all copies.

 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

'''
import sys, os, inspect
import numpy
import pytest
import math

from Basilisk.utilities import SimulationBaseClass, macros, unitTestSupport
from Basilisk.simulation.coarse_sun_sensor import coarse_sun_sensor
import matplotlib.pyplot as plt
from Basilisk.fswAlgorithms.sunlineSuKF import sunlineSuKF  # import the module that is to be tested
from Basilisk.fswAlgorithms.cssComm import cssComm
from Basilisk.fswAlgorithms.fswMessages import fswMessages

import SunLineSuKF_test_utilities as FilterPlots

def setupFilterData(filterObject, initialized):
    filterObject.navStateOutMsgName = "sunline_state_estimate"
    filterObject.filtDataOutMsgName = "sunline_filter_data"
    filterObject.cssDataInMsgName = "css_sensors_data"
    filterObject.cssConfigInMsgName = "css_config_data"

    filterObject.alpha = 0.02
    filterObject.beta = 2.0
    filterObject.kappa = 0.0

    if initialized:
        filterObject.stateInit = [0.0, 0.0, 1.0, 0.0, 0.0, 1.]
        filterObject.filterInitialized = 1
    else:
        filterObject.filterInitialized = 0

    filterObject.covarInit = [1., 0.0, 0.0, 0.0, 0.0, 0.0,
                          0.0, 1., 0.0, 0.0, 0.0, 0.0,
                          0.0, 0.0, 1., 0.0, 0.0, 0.0,
                          0.0, 0.0, 0.0, 0.02, 0.0, 0.0,
                          0.0, 0.0, 0.0, 0.0, 0.02, 0.0,
                          0.0, 0.0, 0.0, 0.0, 0.0, 1E-4]
    qNoiseIn = numpy.identity(6)
    qNoiseIn[0:3, 0:3] = qNoiseIn[0:3, 0:3]*0.001*0.001
    qNoiseIn[3:5, 3:5] = qNoiseIn[3:5, 3:5]*0.001*0.001
    qNoiseIn[5, 5] = qNoiseIn[5, 5]*0.0000002*0.0000002
    filterObject.qNoise = qNoiseIn.reshape(36).tolist()
    filterObject.qObsVal = 0.002
    filterObject.sensorUseThresh = 0.0


# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_
[docs]@pytest.mark.parametrize("kellyOn", [ (False), (True) ]) def test_all_sunline_kf(show_plots, kellyOn): """Module Unit Test""" [testResults, testMessage] = SwitchMethods() assert testResults < 1, testMessage [testResults, testMessage] = StatePropSunLine(show_plots) assert testResults < 1, testMessage [testResults, testMessage] = StateUpdateSunLine(show_plots, kellyOn) assert testResults < 1, testMessage [testResults, testMessage] = FaultScenarios() assert testResults < 1, testMessage
def SwitchMethods(): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages ################################################################################### ## Test the sunlineSEKFComputeDCM_BS method ################################################################################### numStates = 6 inputStates = [2, 1, 0.75, 0.1, 0.4, 0.] sunheading = inputStates[:3] bvec1 = [0., 1., 0.] b1 = numpy.array(bvec1) dcm_BS = [1., 0., 0., 0., 1., 0., 0., 0., 1.] # Fill in expected values for test DCM_exp = numpy.zeros([3,3]) W_exp = numpy.eye(numStates) DCM_exp[:, 0] = numpy.array(inputStates[0:3]) / (numpy.linalg.norm(numpy.array(inputStates[0:3]))) DCM_exp[:, 1] = numpy.cross(DCM_exp[:, 0], b1) / numpy.linalg.norm(numpy.array(numpy.cross(DCM_exp[:, 0], b1))) DCM_exp[:, 2] = numpy.cross(DCM_exp[:, 0], DCM_exp[:, 1]) / numpy.linalg.norm( numpy.cross(DCM_exp[:, 0], DCM_exp[:, 1])) # Fill in the variables for the test dcm = sunlineSuKF.new_doubleArray(3 * 3) for j in range(9): sunlineSuKF.doubleArray_setitem(dcm, j, dcm_BS[j]) sunlineSuKF.sunlineSuKFComputeDCM_BS(sunheading, bvec1, dcm) switchBSout = [] dcmOut = [] for j in range(9): dcmOut.append(sunlineSuKF.doubleArray_getitem(dcm, j)) errorNorm = numpy.zeros(1) errorNorm[0] = numpy.linalg.norm(DCM_exp - numpy.array(dcmOut).reshape([3, 3])) for i in range(len(errorNorm)): if (errorNorm[i] > 1.0E-10): testFailCount += 1 testMessages.append("Frame switch failure \n") ################################################################################### ## Test the Switching method ################################################################################### inputStates = [2,1,0.75,0.1,0.4, 1.] bvec1 = [0.,1.,0.] b1 = numpy.array(bvec1) covar = [1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1.] noise =0.01 # Fill in expected values for test DCM_BSold = numpy.zeros([3,3]) DCM_BSnew = numpy.zeros([3,3]) Switch = numpy.eye(numStates) SwitchBSold = numpy.eye(numStates) SwitchBSnew = numpy.eye(numStates) DCM_BSold[:,0] = numpy.array(inputStates[0:3])/(numpy.linalg.norm(numpy.array(inputStates[0:3]))) DCM_BSold[:,1] = numpy.cross(DCM_BSold[:,0], b1)/numpy.linalg.norm(numpy.array(numpy.cross(DCM_BSold[:,0], b1))) DCM_BSold[:,2] = numpy.cross(DCM_BSold[:,0], DCM_BSold[:,1])/numpy.linalg.norm(numpy.cross(DCM_BSold[:,0], DCM_BSold[:,1])) SwitchBSold[3:5, 3:5] = DCM_BSold[1:3, 1:3] b2 = numpy.array([1.,0.,0.]) DCM_BSnew[:,0] = numpy.array(inputStates[0:3])/(numpy.linalg.norm(numpy.array(inputStates[0:3]))) DCM_BSnew[:,1] = numpy.cross(DCM_BSnew[:,0], b2)/numpy.linalg.norm(numpy.array(numpy.cross(DCM_BSnew[:,0], b2))) DCM_BSnew[:,2] = numpy.cross(DCM_BSnew[:,0], DCM_BSnew[:,1])/numpy.linalg.norm(numpy.cross(DCM_BSnew[:,0], DCM_BSnew[:,1])) SwitchBSnew[3:5, 3:5] = DCM_BSnew[1:3, 1:3] DCM_newOld = numpy.dot(DCM_BSnew.T, DCM_BSold) Switch[3:5, 3:5] = DCM_newOld[1:3,1:3] # Fill in the variables for the test bvec = sunlineSuKF.new_doubleArray(3) states = sunlineSuKF.new_doubleArray(numStates) covarMat = sunlineSuKF.new_doubleArray(numStates * numStates) for i in range(3): sunlineSuKF.doubleArray_setitem(bvec, i, bvec1[i]) for i in range(numStates): sunlineSuKF.doubleArray_setitem(states, i, inputStates[i]) for j in range(numStates*numStates): sunlineSuKF.doubleArray_setitem(covarMat, j, covar[j]) # sunlineSEKF.doubleArray_setitem(switchBS, j, switchInput[j]) sunlineSuKF.sunlineSuKFSwitch(bvec, states, covarMat) switchBSout = [] covarOut = [] stateOut = [] bvecOut = [] for i in range(3): bvecOut.append(sunlineSuKF.doubleArray_getitem(bvec, i)) for i in range(numStates): stateOut.append(sunlineSuKF.doubleArray_getitem(states, i)) for j in range(numStates*numStates): covarOut.append(sunlineSuKF.doubleArray_getitem(covarMat, j)) expectedState = numpy.dot(Switch, numpy.array(inputStates)) Pk = numpy.array(covar).reshape([numStates, numStates]) expectedP = numpy.dot(Switch, numpy.dot(Pk, Switch.T)) errorNorm = numpy.zeros(3) errorNorm[0] = numpy.linalg.norm(numpy.array(stateOut) - expectedState) errorNorm[1] = numpy.linalg.norm(expectedP - numpy.array(covarOut).reshape([numStates, numStates])) errorNorm[2] = numpy.linalg.norm(numpy.array(bvecOut) - b2) for i in range(len(errorNorm)): if (errorNorm[i] > 1.0E-10): testFailCount += 1 testMessages.append("Frame switch failure \n") # print out success message if no error were found if testFailCount == 0: print("PASSED: " + " SuKF switch tests") else: print(str(testFailCount) + ' tests failed') print(testMessages) # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def StateUpdateSunLine(show_plots, kellyOn): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container moduleConfig = sunlineSuKF.SunlineSuKFConfig() moduleWrap = unitTestSim.setModelDataWrap(moduleConfig) moduleWrap.ModelTag = "sunlineSuKF" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig) setupFilterData(moduleConfig, False) cssConstelation = fswMessages.CSSConfigFswMsg() CSSOrientationList = [ [0.70710678118654746, -0.5, 0.5], [0.70710678118654746, -0.5, -0.5], [0.70710678118654746, 0.5, -0.5], [0.70710678118654746, 0.5, 0.5], [-0.70710678118654746, 0, 0.70710678118654757], [-0.70710678118654746, 0.70710678118654757, 0.0], [-0.70710678118654746, 0, -0.70710678118654757], [-0.70710678118654746, -0.70710678118654757, 0.0], ] totalCSSList = [] for CSSHat in CSSOrientationList: newCSS = fswMessages.CSSUnitConfigFswMsg() newCSS.CBias = 1.0 newCSS.nHat_B = CSSHat totalCSSList.append(newCSS) cssConstelation.nCSS = len(CSSOrientationList) cssConstelation.cssVals = totalCSSList unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, moduleConfig.cssConfigInMsgName, cssConstelation) unitTestSim.TotalSim.logThisMessage('sunline_filter_data', testProcessRate) # Add the kelly curve coefficients if kellyOn: kellList = [] for j in range(len(CSSOrientationList)): kellyData = sunlineSuKF.SunlineSuKFCFit() kellyData.cssKellFact = 0.05 kellyData.cssKellPow = 2. kellyData.cssRelScale = 1. kellList.append(kellyData) moduleConfig.kellFits = kellList testVector = numpy.array([-0.7, 0.7, 0.0]) testVector/=numpy.linalg.norm(testVector) inputData = cssComm.CSSArraySensorIntMsg() dotList = [] for element in CSSOrientationList: dotProd = numpy.dot(numpy.array(element), testVector)/(numpy.linalg.norm(element)*numpy.linalg.norm(testVector)) dotList.append(dotProd) inputData.CosValue = dotList inputMessageSize = inputData.getStructSize() unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.cssDataInMsgName, inputMessageSize, 2) # number of buffers (leave at 2 as default, don't make zero) stateTarget = testVector.tolist() stateTarget.extend([0.0, 0.0, 1.]) # moduleConfig.stateInit = [0.7, 0.7, 0.0, 0.01, 0.001, 1.] numStates = len(moduleConfig.stateInit) unitTestSim.InitializeSimulation() if kellyOn: time = 1000 else: time = 500 for i in range(time): unitTestSim.TotalSim.WriteMessageData(moduleConfig.cssDataInMsgName, inputMessageSize, unitTestSim.TotalSim.CurrentNanos, inputData) unitTestSim.ConfigureStopTime(macros.sec2nano((i+1)*0.5)) unitTestSim.ExecuteSimulation() stateLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".state", list(range(numStates))) postFitLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".postFitRes", list(range(8))) covarLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".covar", list(range(numStates*numStates))) accuracy = 1.0E-3 if kellyOn: accuracy = 1.0E-2 # 1% Error test for the kelly curves given errors for i in range(numStates): if(covarLog[-1, i*numStates+1+i] > covarLog[0, i*numStates+1+i]): testFailCount += 1 testMessages.append("Covariance update failure first part") if(numpy.arccos(numpy.dot(stateLog[-1, 1:4], stateTarget[0:3])/(numpy.linalg.norm(stateLog[-1, 1:4])*numpy.linalg.norm(stateTarget[0:3]))) > accuracy): print(numpy.arccos(numpy.dot(stateLog[-1, 1:4], stateTarget[0:3])/(numpy.linalg.norm(stateLog[-1, 1:4])*numpy.linalg.norm(stateTarget[0:3])))) testFailCount += 1 testMessages.append("Pointing update failure") if(numpy.linalg.norm(stateLog[-1, 4:7] - stateTarget[3:6]) > accuracy): print(numpy.linalg.norm(stateLog[-1, 4:7] - stateTarget[3:6])) testFailCount += 1 testMessages.append("Rate update failure") if(abs(stateLog[-1, 6] - stateTarget[5]) > accuracy): print(abs(stateLog[-1, 6] - stateTarget[5])) testFailCount += 1 testMessages.append("Sun Intensity update failure") testVector = numpy.array([-0.7, 0.75, 0.0]) testVector /= numpy.linalg.norm(testVector) inputData = cssComm.CSSArraySensorIntMsg() dotList = [] for element in CSSOrientationList: dotProd = numpy.dot(numpy.array(element), testVector) dotList.append(dotProd) inputData.CosValue = dotList for i in range(time): if i > 20: unitTestSim.TotalSim.WriteMessageData(moduleConfig.cssDataInMsgName, inputMessageSize, unitTestSim.TotalSim.CurrentNanos, inputData) unitTestSim.ConfigureStopTime(macros.sec2nano((i+time+1)*0.5)) unitTestSim.ExecuteSimulation() stateLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".state", list(range(numStates))) postFitLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".postFitRes", list(range(8))) covarLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".covar", list(range(numStates*numStates))) stateTarget = testVector.tolist() stateTarget.extend([0.0, 0.0, 1.0]) for i in range(numStates): if(covarLog[-1, i*numStates+1+i] > covarLog[0, i*numStates+1+i]): print(covarLog[-1, i*numStates+1+i] - covarLog[0, i*numStates+1+i]) testFailCount += 1 testMessages.append("Covariance update failure") if(numpy.arccos(numpy.dot(stateLog[-1, 1:4], stateTarget[0:3])/(numpy.linalg.norm(stateLog[-1, 1:4])*numpy.linalg.norm(stateTarget[0:3]))) > accuracy): print(numpy.arccos(numpy.dot(stateLog[-1, 1:4], stateTarget[0:3])/(numpy.linalg.norm(stateLog[-1, 1:4])*numpy.linalg.norm(stateTarget[0:3])))) testFailCount += 1 testMessages.append("Pointing update failure") if(numpy.linalg.norm(stateLog[-1, 4:7] - stateTarget[3:6]) > accuracy): print(numpy.linalg.norm(stateLog[-1, 4:7] - stateTarget[3:6])) testFailCount += 1 testMessages.append("Rate update failure") if(abs(stateLog[-1, 6] - stateTarget[5]) > accuracy): print(abs(stateLog[-1, 6] - stateTarget[5])) testFailCount += 1 testMessages.append("Sun Intensity update failure") FilterPlots.StateCovarPlot(stateLog, covarLog, show_plots) FilterPlots.PostFitResiduals(postFitLog, moduleConfig.qObsVal, show_plots) # print out success message if no error were found if testFailCount == 0: print("PASSED: " + moduleWrap.ModelTag + " state update") else: print(testMessages) # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def StatePropSunLine(show_plots): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container moduleConfig = sunlineSuKF.SunlineSuKFConfig() moduleWrap = unitTestSim.setModelDataWrap(moduleConfig) moduleWrap.ModelTag = "sunlineSuKF" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig) setupFilterData(moduleConfig, True) numStates = 6 unitTestSim.TotalSim.logThisMessage('sunline_filter_data', testProcessRate) unitTestSim.InitializeSimulation() unitTestSim.ConfigureStopTime(macros.sec2nano(8000.0)) unitTestSim.ExecuteSimulation() stateLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".state", list(range(numStates))) postFitLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".postFitRes", list(range(8))) covarLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".covar", list(range(numStates*numStates))) FilterPlots.StateCovarPlot(stateLog, covarLog, show_plots) FilterPlots.PostFitResiduals(postFitLog, moduleConfig.qObsVal, show_plots) for i in range(numStates): if(abs(stateLog[-1, i+1] - stateLog[0, i+1]) > 1.0E-10): print(abs(stateLog[-1, i+1] - stateLog[0, i+1])) testFailCount += 1 testMessages.append("State propagation failure") # print out success message if no error were found if testFailCount == 0: print("PASSED: " + moduleWrap.ModelTag + " state propagation") # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def FaultScenarios(): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Clean methods for Measurement and Time Updates moduleConfigClean1 = sunlineSuKF.SunlineSuKFConfig() moduleConfigClean1.numStates = 6 moduleConfigClean1.countHalfSPs = moduleConfigClean1.numStates moduleConfigClean1.state = [0., 0., 0., 0., 0., 0.] moduleConfigClean1.statePrev = [0., 0., 0., 0., 0., 0.] moduleConfigClean1.sBar = [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.] moduleConfigClean1.sBarPrev = [1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1.] moduleConfigClean1.covar = [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.] moduleConfigClean1.covarPrev = [2., 0., 0., 0., 0., 0., 0., 2., 0., 0., 0., 0., 0., 0., 2., 0., 0., 0., 0., 0., 0., 2., 0., 0., 0., 0., 0., 0., 2., 0., 0., 0., 0., 0., 0., 2.] sunlineSuKF.sunlineSuKFCleanUpdate(moduleConfigClean1) if numpy.linalg.norm(numpy.array(moduleConfigClean1.covarPrev) - numpy.array(moduleConfigClean1.covar)) > 1E10: testFailCount += 1 testMessages.append("sunlineSuKFClean Covar failed") if numpy.linalg.norm(numpy.array(moduleConfigClean1.statePrev) - numpy.array(moduleConfigClean1.state)) > 1E10: testFailCount += 1 testMessages.append("sunlineSuKFClean States failed") if numpy.linalg.norm(numpy.array(moduleConfigClean1.sBar) - numpy.array(moduleConfigClean1.sBarPrev)) > 1E10: testFailCount += 1 testMessages.append("sunlineSuKFClean sBar failed") moduleConfigClean1.navStateOutMsgName = "sunline_state_estimate" moduleConfigClean1.filtDataOutMsgName = "sunline_filter_data" moduleConfigClean1.cssDataInMsgName = "css_sensors_data" moduleConfigClean1.cssConfigInMsgName = "css_config_data" moduleConfigClean1.alpha = 0.02 moduleConfigClean1.beta = 2.0 moduleConfigClean1.kappa = 0.0 moduleConfigClean1.wC = [-1] * (moduleConfigClean1.numStates * 2 + 1) moduleConfigClean1.wM = [-1] * (moduleConfigClean1.numStates * 2 + 1) retTime = sunlineSuKF.sunlineSuKFTimeUpdate(moduleConfigClean1, 1) retMease = sunlineSuKF.sunlineSuKFMeasUpdate(moduleConfigClean1, 1) if retTime == 0: testFailCount += 1 testMessages.append("Failed to catch bad Update and clean in Time update") if retMease == 0: testFailCount += 1 testMessages.append("Failed to catch bad Update and clean in Meas update") # print out success message if no error were found if testFailCount == 0: print("PASSED: fault detection test") # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] if __name__ == "__main__": # test_all_sunline_kf(True) # StateUpdateSunLine(True, True) FaultScenarios()