''' '''
'''
ISC License
Copyright (c) 2016-2018, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
import sys, os, inspect
import numpy
import pytest
import math
from Basilisk.utilities import SimulationBaseClass, macros, unitTestSupport
from Basilisk.simulation.coarse_sun_sensor import coarse_sun_sensor
import matplotlib.pyplot as plt
from Basilisk.fswAlgorithms.sunlineSuKF import sunlineSuKF # import the module that is to be tested
from Basilisk.fswAlgorithms.cssComm import cssComm
from Basilisk.fswAlgorithms.fswMessages import fswMessages
import SunLineSuKF_test_utilities as FilterPlots
def setupFilterData(filterObject, initialized):
filterObject.navStateOutMsgName = "sunline_state_estimate"
filterObject.filtDataOutMsgName = "sunline_filter_data"
filterObject.cssDataInMsgName = "css_sensors_data"
filterObject.cssConfigInMsgName = "css_config_data"
filterObject.alpha = 0.02
filterObject.beta = 2.0
filterObject.kappa = 0.0
if initialized:
filterObject.stateInit = [0.0, 0.0, 1.0, 0.0, 0.0, 1.]
filterObject.filterInitialized = 1
else:
filterObject.filterInitialized = 0
filterObject.covarInit = [1., 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1., 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1., 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.02, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.02, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1E-4]
qNoiseIn = numpy.identity(6)
qNoiseIn[0:3, 0:3] = qNoiseIn[0:3, 0:3]*0.001*0.001
qNoiseIn[3:5, 3:5] = qNoiseIn[3:5, 3:5]*0.001*0.001
qNoiseIn[5, 5] = qNoiseIn[5, 5]*0.0000002*0.0000002
filterObject.qNoise = qNoiseIn.reshape(36).tolist()
filterObject.qObsVal = 0.002
filterObject.sensorUseThresh = 0.0
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_
[docs]@pytest.mark.parametrize("kellyOn", [
(False),
(True)
])
def test_all_sunline_kf(show_plots, kellyOn):
"""Module Unit Test"""
[testResults, testMessage] = SwitchMethods()
assert testResults < 1, testMessage
[testResults, testMessage] = StatePropSunLine(show_plots)
assert testResults < 1, testMessage
[testResults, testMessage] = StateUpdateSunLine(show_plots, kellyOn)
assert testResults < 1, testMessage
[testResults, testMessage] = FaultScenarios()
assert testResults < 1, testMessage
def SwitchMethods():
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
###################################################################################
## Test the sunlineSEKFComputeDCM_BS method
###################################################################################
numStates = 6
inputStates = [2, 1, 0.75, 0.1, 0.4, 0.]
sunheading = inputStates[:3]
bvec1 = [0., 1., 0.]
b1 = numpy.array(bvec1)
dcm_BS = [1., 0., 0.,
0., 1., 0.,
0., 0., 1.]
# Fill in expected values for test
DCM_exp = numpy.zeros([3,3])
W_exp = numpy.eye(numStates)
DCM_exp[:, 0] = numpy.array(inputStates[0:3]) / (numpy.linalg.norm(numpy.array(inputStates[0:3])))
DCM_exp[:, 1] = numpy.cross(DCM_exp[:, 0], b1) / numpy.linalg.norm(numpy.array(numpy.cross(DCM_exp[:, 0], b1)))
DCM_exp[:, 2] = numpy.cross(DCM_exp[:, 0], DCM_exp[:, 1]) / numpy.linalg.norm(
numpy.cross(DCM_exp[:, 0], DCM_exp[:, 1]))
# Fill in the variables for the test
dcm = sunlineSuKF.new_doubleArray(3 * 3)
for j in range(9):
sunlineSuKF.doubleArray_setitem(dcm, j, dcm_BS[j])
sunlineSuKF.sunlineSuKFComputeDCM_BS(sunheading, bvec1, dcm)
switchBSout = []
dcmOut = []
for j in range(9):
dcmOut.append(sunlineSuKF.doubleArray_getitem(dcm, j))
errorNorm = numpy.zeros(1)
errorNorm[0] = numpy.linalg.norm(DCM_exp - numpy.array(dcmOut).reshape([3, 3]))
for i in range(len(errorNorm)):
if (errorNorm[i] > 1.0E-10):
testFailCount += 1
testMessages.append("Frame switch failure \n")
###################################################################################
## Test the Switching method
###################################################################################
inputStates = [2,1,0.75,0.1,0.4, 1.]
bvec1 = [0.,1.,0.]
b1 = numpy.array(bvec1)
covar = [1., 0., 0., 1., 0., 0.,
0., 1., 0., 0., 1., 0.,
0., 0., 1., 0., 0., 1.,
1., 0., 0., 1., 0., 0.,
0., 1., 0., 0., 1., 0.,
0., 0., 1., 0., 0., 1.]
noise =0.01
# Fill in expected values for test
DCM_BSold = numpy.zeros([3,3])
DCM_BSnew = numpy.zeros([3,3])
Switch = numpy.eye(numStates)
SwitchBSold = numpy.eye(numStates)
SwitchBSnew = numpy.eye(numStates)
DCM_BSold[:,0] = numpy.array(inputStates[0:3])/(numpy.linalg.norm(numpy.array(inputStates[0:3])))
DCM_BSold[:,1] = numpy.cross(DCM_BSold[:,0], b1)/numpy.linalg.norm(numpy.array(numpy.cross(DCM_BSold[:,0], b1)))
DCM_BSold[:,2] = numpy.cross(DCM_BSold[:,0], DCM_BSold[:,1])/numpy.linalg.norm(numpy.cross(DCM_BSold[:,0], DCM_BSold[:,1]))
SwitchBSold[3:5, 3:5] = DCM_BSold[1:3, 1:3]
b2 = numpy.array([1.,0.,0.])
DCM_BSnew[:,0] = numpy.array(inputStates[0:3])/(numpy.linalg.norm(numpy.array(inputStates[0:3])))
DCM_BSnew[:,1] = numpy.cross(DCM_BSnew[:,0], b2)/numpy.linalg.norm(numpy.array(numpy.cross(DCM_BSnew[:,0], b2)))
DCM_BSnew[:,2] = numpy.cross(DCM_BSnew[:,0], DCM_BSnew[:,1])/numpy.linalg.norm(numpy.cross(DCM_BSnew[:,0], DCM_BSnew[:,1]))
SwitchBSnew[3:5, 3:5] = DCM_BSnew[1:3, 1:3]
DCM_newOld = numpy.dot(DCM_BSnew.T, DCM_BSold)
Switch[3:5, 3:5] = DCM_newOld[1:3,1:3]
# Fill in the variables for the test
bvec = sunlineSuKF.new_doubleArray(3)
states = sunlineSuKF.new_doubleArray(numStates)
covarMat = sunlineSuKF.new_doubleArray(numStates * numStates)
for i in range(3):
sunlineSuKF.doubleArray_setitem(bvec, i, bvec1[i])
for i in range(numStates):
sunlineSuKF.doubleArray_setitem(states, i, inputStates[i])
for j in range(numStates*numStates):
sunlineSuKF.doubleArray_setitem(covarMat, j, covar[j])
# sunlineSEKF.doubleArray_setitem(switchBS, j, switchInput[j])
sunlineSuKF.sunlineSuKFSwitch(bvec, states, covarMat)
switchBSout = []
covarOut = []
stateOut = []
bvecOut = []
for i in range(3):
bvecOut.append(sunlineSuKF.doubleArray_getitem(bvec, i))
for i in range(numStates):
stateOut.append(sunlineSuKF.doubleArray_getitem(states, i))
for j in range(numStates*numStates):
covarOut.append(sunlineSuKF.doubleArray_getitem(covarMat, j))
expectedState = numpy.dot(Switch, numpy.array(inputStates))
Pk = numpy.array(covar).reshape([numStates, numStates])
expectedP = numpy.dot(Switch, numpy.dot(Pk, Switch.T))
errorNorm = numpy.zeros(3)
errorNorm[0] = numpy.linalg.norm(numpy.array(stateOut) - expectedState)
errorNorm[1] = numpy.linalg.norm(expectedP - numpy.array(covarOut).reshape([numStates, numStates]))
errorNorm[2] = numpy.linalg.norm(numpy.array(bvecOut) - b2)
for i in range(len(errorNorm)):
if (errorNorm[i] > 1.0E-10):
testFailCount += 1
testMessages.append("Frame switch failure \n")
# print out success message if no error were found
if testFailCount == 0:
print("PASSED: " + " SuKF switch tests")
else:
print(str(testFailCount) + ' tests failed')
print(testMessages)
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
def StateUpdateSunLine(show_plots, kellyOn):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
moduleConfig = sunlineSuKF.SunlineSuKFConfig()
moduleWrap = unitTestSim.setModelDataWrap(moduleConfig)
moduleWrap.ModelTag = "sunlineSuKF"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
setupFilterData(moduleConfig, False)
cssConstelation = fswMessages.CSSConfigFswMsg()
CSSOrientationList = [
[0.70710678118654746, -0.5, 0.5],
[0.70710678118654746, -0.5, -0.5],
[0.70710678118654746, 0.5, -0.5],
[0.70710678118654746, 0.5, 0.5],
[-0.70710678118654746, 0, 0.70710678118654757],
[-0.70710678118654746, 0.70710678118654757, 0.0],
[-0.70710678118654746, 0, -0.70710678118654757],
[-0.70710678118654746, -0.70710678118654757, 0.0],
]
totalCSSList = []
for CSSHat in CSSOrientationList:
newCSS = fswMessages.CSSUnitConfigFswMsg()
newCSS.CBias = 1.0
newCSS.nHat_B = CSSHat
totalCSSList.append(newCSS)
cssConstelation.nCSS = len(CSSOrientationList)
cssConstelation.cssVals = totalCSSList
unitTestSupport.setMessage(unitTestSim.TotalSim,
unitProcessName,
moduleConfig.cssConfigInMsgName,
cssConstelation)
unitTestSim.TotalSim.logThisMessage('sunline_filter_data', testProcessRate)
# Add the kelly curve coefficients
if kellyOn:
kellList = []
for j in range(len(CSSOrientationList)):
kellyData = sunlineSuKF.SunlineSuKFCFit()
kellyData.cssKellFact = 0.05
kellyData.cssKellPow = 2.
kellyData.cssRelScale = 1.
kellList.append(kellyData)
moduleConfig.kellFits = kellList
testVector = numpy.array([-0.7, 0.7, 0.0])
testVector/=numpy.linalg.norm(testVector)
inputData = cssComm.CSSArraySensorIntMsg()
dotList = []
for element in CSSOrientationList:
dotProd = numpy.dot(numpy.array(element), testVector)/(numpy.linalg.norm(element)*numpy.linalg.norm(testVector))
dotList.append(dotProd)
inputData.CosValue = dotList
inputMessageSize = inputData.getStructSize()
unitTestSim.TotalSim.CreateNewMessage(unitProcessName,
moduleConfig.cssDataInMsgName,
inputMessageSize,
2) # number of buffers (leave at 2 as default, don't make zero)
stateTarget = testVector.tolist()
stateTarget.extend([0.0, 0.0, 1.])
# moduleConfig.stateInit = [0.7, 0.7, 0.0, 0.01, 0.001, 1.]
numStates = len(moduleConfig.stateInit)
unitTestSim.InitializeSimulation()
if kellyOn:
time = 1000
else:
time = 500
for i in range(time):
unitTestSim.TotalSim.WriteMessageData(moduleConfig.cssDataInMsgName,
inputMessageSize,
unitTestSim.TotalSim.CurrentNanos,
inputData)
unitTestSim.ConfigureStopTime(macros.sec2nano((i+1)*0.5))
unitTestSim.ExecuteSimulation()
stateLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".state", list(range(numStates)))
postFitLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".postFitRes", list(range(8)))
covarLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".covar", list(range(numStates*numStates)))
accuracy = 1.0E-3
if kellyOn:
accuracy = 1.0E-2 # 1% Error test for the kelly curves given errors
for i in range(numStates):
if(covarLog[-1, i*numStates+1+i] > covarLog[0, i*numStates+1+i]):
testFailCount += 1
testMessages.append("Covariance update failure first part")
if(numpy.arccos(numpy.dot(stateLog[-1, 1:4], stateTarget[0:3])/(numpy.linalg.norm(stateLog[-1, 1:4])*numpy.linalg.norm(stateTarget[0:3]))) > accuracy):
print(numpy.arccos(numpy.dot(stateLog[-1, 1:4], stateTarget[0:3])/(numpy.linalg.norm(stateLog[-1, 1:4])*numpy.linalg.norm(stateTarget[0:3]))))
testFailCount += 1
testMessages.append("Pointing update failure")
if(numpy.linalg.norm(stateLog[-1, 4:7] - stateTarget[3:6]) > accuracy):
print(numpy.linalg.norm(stateLog[-1, 4:7] - stateTarget[3:6]))
testFailCount += 1
testMessages.append("Rate update failure")
if(abs(stateLog[-1, 6] - stateTarget[5]) > accuracy):
print(abs(stateLog[-1, 6] - stateTarget[5]))
testFailCount += 1
testMessages.append("Sun Intensity update failure")
testVector = numpy.array([-0.7, 0.75, 0.0])
testVector /= numpy.linalg.norm(testVector)
inputData = cssComm.CSSArraySensorIntMsg()
dotList = []
for element in CSSOrientationList:
dotProd = numpy.dot(numpy.array(element), testVector)
dotList.append(dotProd)
inputData.CosValue = dotList
for i in range(time):
if i > 20:
unitTestSim.TotalSim.WriteMessageData(moduleConfig.cssDataInMsgName,
inputMessageSize,
unitTestSim.TotalSim.CurrentNanos,
inputData)
unitTestSim.ConfigureStopTime(macros.sec2nano((i+time+1)*0.5))
unitTestSim.ExecuteSimulation()
stateLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".state", list(range(numStates)))
postFitLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".postFitRes", list(range(8)))
covarLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".covar", list(range(numStates*numStates)))
stateTarget = testVector.tolist()
stateTarget.extend([0.0, 0.0, 1.0])
for i in range(numStates):
if(covarLog[-1, i*numStates+1+i] > covarLog[0, i*numStates+1+i]):
print(covarLog[-1, i*numStates+1+i] - covarLog[0, i*numStates+1+i])
testFailCount += 1
testMessages.append("Covariance update failure")
if(numpy.arccos(numpy.dot(stateLog[-1, 1:4], stateTarget[0:3])/(numpy.linalg.norm(stateLog[-1, 1:4])*numpy.linalg.norm(stateTarget[0:3]))) > accuracy):
print(numpy.arccos(numpy.dot(stateLog[-1, 1:4], stateTarget[0:3])/(numpy.linalg.norm(stateLog[-1, 1:4])*numpy.linalg.norm(stateTarget[0:3]))))
testFailCount += 1
testMessages.append("Pointing update failure")
if(numpy.linalg.norm(stateLog[-1, 4:7] - stateTarget[3:6]) > accuracy):
print(numpy.linalg.norm(stateLog[-1, 4:7] - stateTarget[3:6]))
testFailCount += 1
testMessages.append("Rate update failure")
if(abs(stateLog[-1, 6] - stateTarget[5]) > accuracy):
print(abs(stateLog[-1, 6] - stateTarget[5]))
testFailCount += 1
testMessages.append("Sun Intensity update failure")
FilterPlots.StateCovarPlot(stateLog, covarLog, show_plots)
FilterPlots.PostFitResiduals(postFitLog, moduleConfig.qObsVal, show_plots)
# print out success message if no error were found
if testFailCount == 0:
print("PASSED: " + moduleWrap.ModelTag + " state update")
else:
print(testMessages)
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
def StatePropSunLine(show_plots):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
moduleConfig = sunlineSuKF.SunlineSuKFConfig()
moduleWrap = unitTestSim.setModelDataWrap(moduleConfig)
moduleWrap.ModelTag = "sunlineSuKF"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
setupFilterData(moduleConfig, True)
numStates = 6
unitTestSim.TotalSim.logThisMessage('sunline_filter_data', testProcessRate)
unitTestSim.InitializeSimulation()
unitTestSim.ConfigureStopTime(macros.sec2nano(8000.0))
unitTestSim.ExecuteSimulation()
stateLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".state", list(range(numStates)))
postFitLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".postFitRes", list(range(8)))
covarLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".covar", list(range(numStates*numStates)))
FilterPlots.StateCovarPlot(stateLog, covarLog, show_plots)
FilterPlots.PostFitResiduals(postFitLog, moduleConfig.qObsVal, show_plots)
for i in range(numStates):
if(abs(stateLog[-1, i+1] - stateLog[0, i+1]) > 1.0E-10):
print(abs(stateLog[-1, i+1] - stateLog[0, i+1]))
testFailCount += 1
testMessages.append("State propagation failure")
# print out success message if no error were found
if testFailCount == 0:
print("PASSED: " + moduleWrap.ModelTag + " state propagation")
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
def FaultScenarios():
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Clean methods for Measurement and Time Updates
moduleConfigClean1 = sunlineSuKF.SunlineSuKFConfig()
moduleConfigClean1.numStates = 6
moduleConfigClean1.countHalfSPs = moduleConfigClean1.numStates
moduleConfigClean1.state = [0., 0., 0., 0., 0., 0.]
moduleConfigClean1.statePrev = [0., 0., 0., 0., 0., 0.]
moduleConfigClean1.sBar = [0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0.]
moduleConfigClean1.sBarPrev = [1., 0., 0., 0., 0., 0.,
0., 1., 0., 0., 0., 0.,
0., 0., 1., 0., 0., 0.,
0., 0., 0., 1., 0., 0.,
0., 0., 0., 0., 1., 0.,
0., 0., 0., 0., 0., 1.]
moduleConfigClean1.covar = [0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0.]
moduleConfigClean1.covarPrev = [2., 0., 0., 0., 0., 0.,
0., 2., 0., 0., 0., 0.,
0., 0., 2., 0., 0., 0.,
0., 0., 0., 2., 0., 0.,
0., 0., 0., 0., 2., 0.,
0., 0., 0., 0., 0., 2.]
sunlineSuKF.sunlineSuKFCleanUpdate(moduleConfigClean1)
if numpy.linalg.norm(numpy.array(moduleConfigClean1.covarPrev) - numpy.array(moduleConfigClean1.covar)) > 1E10:
testFailCount += 1
testMessages.append("sunlineSuKFClean Covar failed")
if numpy.linalg.norm(numpy.array(moduleConfigClean1.statePrev) - numpy.array(moduleConfigClean1.state)) > 1E10:
testFailCount += 1
testMessages.append("sunlineSuKFClean States failed")
if numpy.linalg.norm(numpy.array(moduleConfigClean1.sBar) - numpy.array(moduleConfigClean1.sBarPrev)) > 1E10:
testFailCount += 1
testMessages.append("sunlineSuKFClean sBar failed")
moduleConfigClean1.navStateOutMsgName = "sunline_state_estimate"
moduleConfigClean1.filtDataOutMsgName = "sunline_filter_data"
moduleConfigClean1.cssDataInMsgName = "css_sensors_data"
moduleConfigClean1.cssConfigInMsgName = "css_config_data"
moduleConfigClean1.alpha = 0.02
moduleConfigClean1.beta = 2.0
moduleConfigClean1.kappa = 0.0
moduleConfigClean1.wC = [-1] * (moduleConfigClean1.numStates * 2 + 1)
moduleConfigClean1.wM = [-1] * (moduleConfigClean1.numStates * 2 + 1)
retTime = sunlineSuKF.sunlineSuKFTimeUpdate(moduleConfigClean1, 1)
retMease = sunlineSuKF.sunlineSuKFMeasUpdate(moduleConfigClean1, 1)
if retTime == 0:
testFailCount += 1
testMessages.append("Failed to catch bad Update and clean in Time update")
if retMease == 0:
testFailCount += 1
testMessages.append("Failed to catch bad Update and clean in Meas update")
# print out success message if no error were found
if testFailCount == 0:
print("PASSED: fault detection test")
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
if __name__ == "__main__":
# test_all_sunline_kf(True)
# StateUpdateSunLine(True, True)
FaultScenarios()