Source code for test_SunLineEKF

''' '''
'''
 ISC License

 Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder

 Permission to use, copy, modify, and/or distribute this software for any
 purpose with or without fee is hereby granted, provided that the above
 copyright notice and this permission notice appear in all copies.

 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

'''

#   This test validates the EKF module by running several
#   scenarios on both individual functions and the full module.
#   Author: Thibaud Teil

import numpy as np
import pytest

from Basilisk.utilities import SimulationBaseClass
from Basilisk.simulation.alg_contain import alg_contain
from Basilisk.fswAlgorithms.sunlineEKF import sunlineEKF
from Basilisk.fswAlgorithms.cssComm import cssComm
from Basilisk.utilities import macros
import SunLineEKF_test_utilities as FilterPlots
from Basilisk.fswAlgorithms.fswMessages import fswMessages


def setupFilterData(filterObject):
    filterObject.navStateOutMsgName = "sunline_state_estimate"
    filterObject.filtDataOutMsgName = "sunline_filter_data"
    filterObject.cssDataInMsgName = "css_sensors_data"
    filterObject.cssConfigInMsgName = "css_config_data"

    filterObject.sensorUseThresh = 0.
    filterObject.state = [1.0, 1.0, 1.0, 0.0, 0.0, 0.0]
    filterObject.x = [1.0, 0.0, 1.0, 0.0, 0.1, 0.0]
    filterObject.covar = [0.4, 0.0, 0.0, 0.0, 0.0, 0.0,
                          0.0, 0.4, 0.0, 0.0, 0.0, 0.0,
                          0.0, 0.0, 0.4, 0.0, 0.0, 0.0,
                          0.0, 0.0, 0.0, 0.004, 0.0, 0.0,
                          0.0, 0.0, 0.0, 0.0, 0.004, 0.0,
                          0.0, 0.0, 0.0, 0.0, 0.0, 0.004]

    filterObject.qProcVal = 0.1**2
    filterObject.qObsVal = 0.001
    filterObject.eKFSwitch = 5. #If low (0-5), the CKF kicks in easily, if high (>10) it's mostly only EKF

[docs]def test_all_functions_ekf(show_plots): """Module Unit Test""" [testResults, testMessage] = sunline_individual_test() assert testResults < 1, testMessage [testResults, testMessage] = StatePropStatic() assert testResults < 1, testMessage [testResults, testMessage] = StatePropVariable(show_plots) assert testResults < 1, testMessage
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed # @pytest.mark.skipif(conditionstring) # uncomment this line if this test has an expected failure, adjust message as needed # @pytest.mark.xfail(True) # The following 'parametrize' function decorator provides the parameters and expected results for each # of the multiple test runs for this test.
[docs]@pytest.mark.parametrize("SimHalfLength, AddMeasNoise , testVector1 , testVector2, stateGuess", [ (200, True ,[-0.7, 0.7, 0.0] ,[0.8, 0.9, 0.0], [0.7, 0.7, 0.0, 0.0, 0.0, 0.0]), (2000, True ,[-0.7, 0.7, 0.0] ,[0.8, 0.9, 0.0], [0.7, 0.7, 0.0, 0.0, 0.0, 0.0]), (200, False ,[-0.7, 0.7, 0.0] ,[0.8, 0.9, 0.0], [0.7, 0.7, 0.0, 0.0, 0.0, 0.0]), (200, False ,[0., 0.4, -0.4] ,[0., 0.7, 0.2], [0.3, 0.0, 0.6, 0.0, 0.0, 0.0]), (200, True ,[0., 0.4, -0.4] ,[0.4, 0.5, 0.], [0.7, 0.7, 0.0, 0.0, 0.0, 0.0]), (200, True ,[-0.7, 0.7, 0.0] ,[0.8, 0.9, 0.0], [0.7, 0.7, 0.0, 0.0, 0.0, 0.0]) ]) # uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed # @pytest.mark.skipif(conditionstring) # uncomment this line if this test has an expected failure, adjust message as needed # @pytest.mark.xfail() # need to update how the RW states are defined # provide a unique test method name, starting with test_ def test_all_sunline_ekf(show_plots, SimHalfLength, AddMeasNoise, testVector1, testVector2, stateGuess): """Module Unit Test""" [testResults, testMessage] = StateUpdateSunLine(show_plots, SimHalfLength, AddMeasNoise, testVector1, testVector2, stateGuess) assert testResults < 1, testMessage
def sunline_individual_test(): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages ################################################################################### ## Testing dynamics matrix computation ################################################################################### inputStates = [2,1,0.75,0.1,0.4,0.05] dt =0.5 expDynMat = np.zeros([6,6]) expDynMat[0:3, 0:3] = -(np.outer(inputStates[0:3],inputStates[3:6])/np.linalg.norm(inputStates[0:3])**2. + np.dot(inputStates[3:6],inputStates[0:3])*(np.linalg.norm(inputStates[0:3])**2.*np.eye(3)- 2*np.outer(inputStates[0:3],inputStates[0:3]))/np.linalg.norm(inputStates[0:3])**4.) expDynMat[0:3, 3:6] = np.eye(3) - np.outer(inputStates[0:3],inputStates[0:3])/np.linalg.norm(inputStates[0:3])**2 ## Equations when removing the unobservable states from d_dot expDynMat[3:6, 0:3] = -1/dt*(np.outer(inputStates[0:3],inputStates[3:6])/np.linalg.norm(inputStates[0:3])**2. + np.dot(inputStates[3:6],inputStates[0:3])*(np.linalg.norm(inputStates[0:3])**2.*np.eye(3)- 2*np.outer(inputStates[0:3],inputStates[0:3]))/np.linalg.norm(inputStates[0:3])**4.) expDynMat[3:6, 3:6] =- 1/dt*(np.outer(inputStates[0:3],inputStates[0:3])/np.linalg.norm(inputStates[0:3])**2) dynMat = sunlineEKF.new_doubleArray(6*6) for i in range(36): sunlineEKF.doubleArray_setitem(dynMat, i, 0.0) sunlineEKF.sunlineDynMatrix(inputStates, dt, dynMat) DynOut = [] for i in range(36): DynOut.append(sunlineEKF.doubleArray_getitem(dynMat, i)) DynOut = np.array(DynOut).reshape(6, 6) errorNorm = np.linalg.norm(expDynMat - DynOut) if(errorNorm > 1.0E-10): print(errorNorm) testFailCount += 1 testMessages.append("Dynamics Matrix generation Failure \n") ################################################################################### ## STM and State Test ################################################################################### inputStates = [2,1,0.75, 1.5, 0.5, 0.5] dt =0.5 stateTransition = sunlineEKF.new_doubleArray(36) states = sunlineEKF.new_doubleArray(6) for i in range(6): sunlineEKF.doubleArray_setitem(states, i, inputStates[i]) for j in range(6): if i==j: sunlineEKF.doubleArray_setitem(stateTransition, 6*i+j, 1.0) else: sunlineEKF.doubleArray_setitem(stateTransition, 6*i+j, 0.0) sunlineEKF.sunlineStateSTMProp(expDynMat.flatten().tolist(), dt, states, stateTransition) PropStateOut = [] PropSTMOut = [] for i in range(6): PropStateOut.append(sunlineEKF.doubleArray_getitem(states, i)) for i in range(36): PropSTMOut.append(sunlineEKF.doubleArray_getitem(stateTransition, i)) STMout = np.array(PropSTMOut).reshape([6,6]) StatesOut = np.array(PropStateOut) expectedSTM = dt*np.dot(expDynMat, np.eye(6)) + np.eye(6) expectedStates = np.zeros(6) inputStatesArray = np.array(inputStates) ## Equations when removing the unobservable states from d_dot expectedStates[3:6] = np.array(inputStatesArray[3:6] - np.dot(inputStatesArray[3:6], inputStatesArray[0:3])*inputStatesArray[0:3]/np.linalg.norm(inputStatesArray[0:3])**2.) expectedStates[0:3] = np.array(inputStatesArray[0:3] + dt*(inputStatesArray[3:6] - np.dot(inputStatesArray[3:6], inputStatesArray[0:3])*inputStatesArray[0:3]/np.linalg.norm(inputStatesArray[0:3])**2.)) errorNormSTM = np.linalg.norm(expectedSTM - STMout) errorNormStates = np.linalg.norm(expectedStates - StatesOut) if(errorNormSTM > 1.0E-10): testFailCount += 1 testMessages.append("STM Propagation Failure \n") if(errorNormStates > 1.0E-10): testFailCount += 1 testMessages.append("State Propagation Failure \n") ################################################################################### ## Test the H and yMeas matrix generation as well as the observation count ################################################################################### numCSS = 4 cssCos = [np.cos(np.deg2rad(10.)), np.cos(np.deg2rad(25.)), np.cos(np.deg2rad(5.)), np.cos(np.deg2rad(90.))] sensorTresh = np.cos(np.deg2rad(50.)) cssNormals = [1.,0.,0.,0.,1.,0., 0.,0.,1., 1./np.sqrt(2), 1./np.sqrt(2),0.] cssBias = [1.0 for i in range(numCSS)] measMat = sunlineEKF.new_doubleArray(8*6) obs = sunlineEKF.new_doubleArray(8) yMeas = sunlineEKF.new_doubleArray(8) numObs = sunlineEKF.new_intArray(1) for i in range(8*6): sunlineEKF.doubleArray_setitem(measMat, i, 0.) for i in range(8): sunlineEKF.doubleArray_setitem(obs, i, 0.0) sunlineEKF.doubleArray_setitem(yMeas, i, 0.0) sunlineEKF.sunlineHMatrixYMeas(inputStates, numCSS, cssCos, sensorTresh, cssNormals, cssBias, obs, yMeas, numObs, measMat) obsOut = [] yMeasOut = [] numObsOut = [] HOut = [] for i in range(8*6): HOut.append(sunlineEKF.doubleArray_getitem(measMat, i)) for i in range(8): yMeasOut.append(sunlineEKF.doubleArray_getitem(yMeas, i)) obsOut.append(sunlineEKF.doubleArray_getitem(obs, i)) numObsOut.append(sunlineEKF.intArray_getitem(numObs, 0)) #Fill in expected values for test expectedH = np.zeros([8,6]) expectedY = np.zeros(8) for j in range(3): expectedH[j,0:3] = np.eye(3)[j,:] expectedY[j] =np.array(cssCos[j]) - np.dot(np.array(inputStates)[0:3], np.array(cssNormals)[j*3:(j+1)*3]) expectedObs = np.array([np.cos(np.deg2rad(10.)), np.cos(np.deg2rad(25.)), np.cos(np.deg2rad(5.)),0.,0.,0.,0.,0.]) expectedNumObs = 3 HOut = np.array(HOut).reshape([8, 6]) errorNorm = np.zeros(4) errorNorm[0] = np.linalg.norm(HOut - expectedH) errorNorm[1] = np.linalg.norm(yMeasOut - expectedY) errorNorm[2] = np.linalg.norm(obsOut - expectedObs) errorNorm[3] = np.linalg.norm(numObsOut[0] - expectedNumObs) for i in range(4): if(errorNorm[i] > 1.0E-10): testFailCount += 1 testMessages.append("H and yMeas update failure \n") ################################################################################### ## Test the Kalman Gain ################################################################################### numObs = 3 h = [1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.] covar = [1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1.] noise= 0.01 Kalman = sunlineEKF.new_doubleArray(6 * 8) for i in range(8 * 6): sunlineEKF.doubleArray_setitem(Kalman, i, 0.) sunlineEKF.sunlineKalmanGain(covar, h, noise, numObs, Kalman) KalmanOut = [] for i in range(8 * 6): KalmanOut.append(sunlineEKF.doubleArray_getitem(Kalman, i)) # Fill in expected values for test Hmat = np.array(h).reshape([8,6]) Pk = np.array(covar).reshape([6,6]) R = noise*np.eye(3) expectedK = np.dot(np.dot(Pk, Hmat[0:numObs,:].T), np.linalg.inv(np.dot(np.dot(Hmat[0:numObs,:], Pk), Hmat[0:numObs,:].T) + R[0:numObs,0:numObs])) KalmanOut = np.array(KalmanOut)[0:6*numObs].reshape([6, 3]) errorNorm = np.linalg.norm(KalmanOut[:,0:numObs] - expectedK) if (errorNorm > 1.0E-10): print(errorNorm) testFailCount += 1 testMessages.append("Kalman Gain update failure \n") ################################################################################### ## Test the EKF update ################################################################################### KGain = [1.,2.,3., 0., 1., 2., 1., 0., 1., 0., 1., 0., 3., 0., 1., 0., 2., 0.] for i in range(6*8-6*3): KGain.append(0.) inputStates = [2,1,0.75,0.1,0.4,0.05] xbar = [0.1, 0.2, 0.01, 0.005, 0.009, 0.001] numObs = 3 h = [1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.] covar = [1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1.] noise = 0.01 inputY = np.zeros(3) for j in range(3): inputY[j] = np.array(cssCos[j]) - np.dot(np.array(inputStates)[0:3], np.array(cssNormals)[j * 3:(j + 1) * 3]) inputY = inputY.tolist() stateError = sunlineEKF.new_doubleArray(6) covarMat = sunlineEKF.new_doubleArray(6*6) inputs = sunlineEKF.new_doubleArray(6) for i in range(6): sunlineEKF.doubleArray_setitem(stateError, i, 0.) sunlineEKF.doubleArray_setitem(inputs, i, inputStates[i]) for j in range(6): sunlineEKF.doubleArray_setitem(covarMat,i+j,0.) sunlineEKF.sunlineEKFUpdate(KGain, covar, noise, numObs, inputY, h, inputs, stateError, covarMat) stateOut = [] covarOut = [] errorOut = [] for i in range(6): stateOut.append(sunlineEKF.doubleArray_getitem(inputs, i)) errorOut.append(sunlineEKF.doubleArray_getitem(stateError, i)) for j in range(36): covarOut.append(sunlineEKF.doubleArray_getitem(covarMat, j)) # Fill in expected values for test KK = np.array(KGain)[0:6*3].reshape([6,3]) expectedStates = np.array(inputStates) + np.dot(KK, np.array(inputY)) H = np.array(h).reshape([8,6])[0:3,:] Pk = np.array(covar).reshape([6, 6]) R = noise * np.eye(3) expectedP = np.dot(np.dot(np.eye(6) - np.dot(KK, H), Pk), np.transpose(np.eye(6) - np.dot(KK, H))) + np.dot(KK, np.dot(R,KK.T)) errorNorm = np.zeros(2) errorNorm[0] = np.linalg.norm(np.array(stateOut) - expectedStates) errorNorm[1] = np.linalg.norm(expectedP - np.array(covarOut).reshape([6,6])) for i in range(2): if(errorNorm[i] > 1.0E-10): testFailCount += 1 testMessages.append("EKF update failure \n") ################################################################################### ## Test the CKF update ################################################################################### KGain = [1., 2., 3., 0., 1., 2., 1., 0., 1., 0., 1., 0., 3., 0., 1., 0., 2., 0.] for i in range(6 * 8 - 6 * 3): KGain.append(0.) inputStates = [2, 1, 0.75, 0.1, 0.4, 0.05] xbar = [0.1, 0.2, 0.01, 0.005, 0.009, 0.001] numObs = 3 h = [1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.] covar = [1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1.] noise =0.01 inputY = np.zeros(3) for j in range(3): inputY[j] = np.array(cssCos[j]) - np.dot(np.array(inputStates)[0:3], np.array(cssNormals)[j * 3:(j + 1) * 3]) inputY = inputY.tolist() stateError = sunlineEKF.new_doubleArray(6) covarMat = sunlineEKF.new_doubleArray(6 * 6) for i in range(6): sunlineEKF.doubleArray_setitem(stateError, i, xbar[i]) for j in range(6): sunlineEKF.doubleArray_setitem(covarMat, i + j, 0.) sunlineEKF.sunlineCKFUpdate(xbar, KGain, covar, noise, numObs, inputY, h, stateError, covarMat) covarOut = [] errorOut = [] for i in range(6): errorOut.append(sunlineEKF.doubleArray_getitem(stateError, i)) for j in range(36): covarOut.append(sunlineEKF.doubleArray_getitem(covarMat, j)) # Fill in expected values for test KK = np.array(KGain)[0:6 * 3].reshape([6, 3]) H = np.array(h).reshape([8, 6])[0:3, :] expectedStateError = np.array(xbar) + np.dot(KK, (np.array(inputY) - np.dot(H, np.array(xbar)))) Pk = np.array(covar).reshape([6, 6]) expectedP = np.dot(np.dot(np.eye(6) - np.dot(KK, H), Pk), np.transpose(np.eye(6) - np.dot(KK, H))) + np.dot(KK, np.dot( R, KK.T)) errorNorm = np.zeros(2) errorNorm[0] = np.linalg.norm(np.array(errorOut) - expectedStateError) errorNorm[1] = np.linalg.norm(expectedP - np.array(covarOut).reshape([6, 6])) for i in range(2): if (errorNorm[i] > 1.0E-10): testFailCount += 1 testMessages.append("CKF update failure \n") # print out success message if no error were found if testFailCount == 0: print("PASSED: " + " EKF individual tests") # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] #################################################################################### # Test for the time and update with static states (zero d_dot) #################################################################################### def StatePropStatic(): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container moduleConfig = sunlineEKF.sunlineEKFConfig() moduleWrap = alg_contain.AlgContain(moduleConfig, sunlineEKF.Update_sunlineEKF, sunlineEKF.SelfInit_sunlineEKF, sunlineEKF.CrossInit_sunlineEKF, sunlineEKF.Reset_sunlineEKF) moduleWrap.ModelTag = "SunlineEKF" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig) setupFilterData(moduleConfig) unitTestSim.AddVariableForLogging('SunlineEKF.covar', testProcessRate * 10, 0, 35) unitTestSim.AddVariableForLogging('SunlineEKF.state', testProcessRate * 10, 0, 5) unitTestSim.InitializeSimulation() unitTestSim.ConfigureStopTime(macros.sec2nano(8000.0)) unitTestSim.ExecuteSimulation() stateLog = unitTestSim.GetLogVariableData('SunlineEKF.state') for i in range(6): if (abs(stateLog[-1, i + 1] - stateLog[0, i + 1]) > 1.0E-10): testFailCount += 1 testMessages.append("State propagation failure \n") unitTestSim.terminateSimulation() # print out success message if no error were found if testFailCount == 0: print("PASSED: " + "EKF static state propagation") # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] #################################################################################### # Test for the time and update with changing states (non-zero d_dot) #################################################################################### def StatePropVariable(show_plots): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container moduleConfig = sunlineEKF.sunlineEKFConfig() moduleWrap = alg_contain.AlgContain(moduleConfig, sunlineEKF.Update_sunlineEKF, sunlineEKF.SelfInit_sunlineEKF, sunlineEKF.CrossInit_sunlineEKF, sunlineEKF.Reset_sunlineEKF) moduleWrap.ModelTag = "SunlineEKF" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig) setupFilterData(moduleConfig) InitialState = (np.array(moduleConfig.state)+ +np.array([0.,0.,0.,0.0001,0.002, 0.001])).tolist() Initialx = moduleConfig.x InitialCovar = moduleConfig.covar moduleConfig.state = InitialState unitTestSim.AddVariableForLogging('SunlineEKF.covar', testProcessRate, 0, 35) unitTestSim.AddVariableForLogging('SunlineEKF.stateTransition', testProcessRate, 0, 35) unitTestSim.AddVariableForLogging('SunlineEKF.state', testProcessRate , 0, 5) unitTestSim.AddVariableForLogging('SunlineEKF.x', testProcessRate , 0, 5) unitTestSim.InitializeSimulation() unitTestSim.ConfigureStopTime(macros.sec2nano(1000.0)) unitTestSim.ExecuteSimulation() covarLog = unitTestSim.GetLogVariableData('SunlineEKF.covar') stateLog = unitTestSim.GetLogVariableData('SunlineEKF.state') stateErrorLog = unitTestSim.GetLogVariableData('SunlineEKF.x') stmLog = unitTestSim.GetLogVariableData('SunlineEKF.stateTransition') dt = 0.5 expectedStateArray = np.zeros([2001,7]) expectedStateArray[0,1:7] = np.array(InitialState) for i in range(1,2001): expectedStateArray[i,0] = dt*i*1E9 expectedStateArray[i,1:4] = expectedStateArray[i-1,1:4] + dt*(expectedStateArray[i-1,4:7] - (np.dot(expectedStateArray[i-1,4:7],expectedStateArray[i-1,1:4]))*expectedStateArray[i-1,1:4]/np.linalg.norm(expectedStateArray[i-1,1:4])**2.) ## Equations when removing the unobservable states from d_dot expectedStateArray[i, 4:7] = expectedStateArray[i-1,4:7] - (np.dot(expectedStateArray[i-1,4:7],expectedStateArray[i-1,1:4]))*expectedStateArray[i-1,1:4]/np.linalg.norm(expectedStateArray[i-1,1:4])**2. expDynMat = np.zeros([2001,6,6]) for i in range(0,2001): expDynMat[i, 0:3, 0:3] = -(np.outer(expectedStateArray[i,1:4],expectedStateArray[i,4:7])/np.linalg.norm(expectedStateArray[i,1:4])**2. + np.dot(expectedStateArray[i,4:7], expectedStateArray[i,1:4])*(np.linalg.norm(expectedStateArray[i,1:4])**2.*np.eye(3)- 2*np.outer(expectedStateArray[i,1:4],expectedStateArray[i,1:4]))/np.linalg.norm(expectedStateArray[i,1:4])**4.) expDynMat[i, 0:3, 3:6] = np.eye(3) - np.outer(expectedStateArray[i,1:4],expectedStateArray[i,1:4])/np.linalg.norm(expectedStateArray[i,1:4])**2 ## Equations when removing the unobservable states from d_dot expDynMat[i, 3:6, 0:3] = -1/dt*(np.outer(expectedStateArray[i,1:4],expectedStateArray[i,4:7])/np.linalg.norm(expectedStateArray[i,1:4])**2. + np.dot(expectedStateArray[i,4:7], expectedStateArray[i,1:4])*(np.linalg.norm(expectedStateArray[i,1:4])**2.*np.eye(3)- 2*np.outer(expectedStateArray[i,1:4],expectedStateArray[i,1:4]))/np.linalg.norm(expectedStateArray[i,1:4])**4.) expDynMat[i, 3:6, 3:6] = -1/dt*(np.outer(expectedStateArray[i,1:4],expectedStateArray[i,1:4])/np.linalg.norm(expectedStateArray[i,1:4])**2) expectedSTM = np.zeros([2001,6,6]) expectedSTM[0,:,:] = np.eye(6) for i in range(1,2001): expectedSTM[i,:,:] = dt * np.dot(expDynMat[i-1,:,:], np.eye(6)) + np.eye(6) expectedXBar = np.zeros([2001,7]) expectedXBar[0,1:7] = np.array(Initialx) for i in range(1,2001): expectedXBar[i,0] = dt*i*1E9 expectedXBar[i, 1:7] = np.dot(expectedSTM[i, :, :], expectedXBar[i - 1, 1:7]) expectedCovar = np.zeros([2001,37]) expectedCovar[0,1:37] = np.array(InitialCovar) Gamma = np.zeros([6, 3]) Gamma[0:3, 0:3] = dt ** 2. / 2. * np.eye(3) Gamma[3:6, 0:3] = dt * np.eye(3) ProcNoiseCovar = np.dot(Gamma, np.dot(moduleConfig.qProcVal*np.eye(3),Gamma.T)) for i in range(1,2001): expectedCovar[i,0] = dt*i*1E9 expectedCovar[i,1:37] = (np.dot(expectedSTM[i,:,:], np.dot(np.reshape(expectedCovar[i-1,1:37],[6,6]), np.transpose(expectedSTM[i,:,:])))+ ProcNoiseCovar).flatten() FilterPlots.StatesVsExpected(stateLog, expectedStateArray, show_plots) FilterPlots.StatesPlotCompare(stateErrorLog, expectedXBar, covarLog, expectedCovar, show_plots) for j in range(1,2001): for i in range(6): if (abs(stateLog[j, i + 1] - expectedStateArray[j, i + 1]) > 1.0E-4): testFailCount += 1 testMessages.append("General state propagation failure: State Prop \n") if (abs(stateErrorLog[j, i + 1] - expectedXBar[j, i + 1]) > 1.0E-4): testFailCount += 1 testMessages.append("General state propagation failure: State Error Prop \n") for i in range(36): if (abs(covarLog[j, i + 1] - expectedCovar[j, i + 1]) > 1.0E-4): abs(covarLog[j, i + 1] - expectedCovar[j, i + 1]) testFailCount += 1 testMessages.append("General state propagation failure: Covariance Prop \n") if (abs(stmLog[j, i + 1] - expectedSTM[j,:].flatten()[i]) > 1.0E-4): testFailCount += 1 testMessages.append("General state propagation failure: STM Prop \n") # print out success message if no error were found if testFailCount == 0: print("PASSED: " + "EKF general state propagation") # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] #################################################################################### # Test for the full filter with time and measurement update #################################################################################### def StateUpdateSunLine(show_plots, SimHalfLength, AddMeasNoise, testVector1, testVector2, stateGuess): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container moduleConfig = sunlineEKF.sunlineEKFConfig() moduleWrap = unitTestSim.setModelDataWrap(moduleConfig) moduleWrap.ModelTag = "SunlineEKF" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig) setupFilterData(moduleConfig) # Set up some test parameters cssConstelation = fswMessages.CSSConfigFswMsg() CSSOrientationList = [ [0.70710678118654746, -0.5, 0.5], [0.70710678118654746, -0.5, -0.5], [0.70710678118654746, 0.5, -0.5], [0.70710678118654746, 0.5, 0.5], [-0.70710678118654746, 0, 0.70710678118654757], [-0.70710678118654746, 0.70710678118654757, 0.0], [-0.70710678118654746, 0, -0.70710678118654757], [-0.70710678118654746, -0.70710678118654757, 0.0], ] CSSBias = [1 for i in range(len(CSSOrientationList))] totalCSSList = [] # Initializing a 2D double array is hard with SWIG. That's why there is this # layer between the above list and the actual C variables. i = 0 for CSSHat in CSSOrientationList: newCSS = fswMessages.CSSUnitConfigFswMsg() newCSS.CBias = CSSBias[i] newCSS.nHat_B = CSSHat totalCSSList.append(newCSS) i = i+1 cssConstelation.nCSS = len(CSSOrientationList) cssConstelation.cssVals = totalCSSList msgSize = cssConstelation.getStructSize() inputData = cssComm.CSSArraySensorIntMsg() inputMessageSize = inputData.getStructSize() unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.cssConfigInMsgName, msgSize, 2, "CSSConstellation") unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.cssDataInMsgName, inputMessageSize, 2) # number of buffers (leave at 2 as default, don't make zero) unitTestSim.TotalSim.WriteMessageData(moduleConfig.cssConfigInMsgName, msgSize, 0, cssConstelation) stateTarget1 = testVector1 stateTarget1 += [0.0, 0.0, 0.0] moduleConfig.state = stateGuess moduleConfig.x = (np.array(stateTarget1) - np.array(stateGuess)).tolist() unitTestSim.TotalSim.logThisMessage('sunline_filter_data', testProcessRate) unitTestSim.AddVariableForLogging('SunlineEKF.x', testProcessRate , 0, 5, 'double') unitTestSim.InitializeSimulation() for i in range(SimHalfLength): if i > 20: dotList = [] for element in CSSOrientationList: if AddMeasNoise: dotProd = np.dot(np.array(element), np.array(testVector1)[0:3]) + np.random.normal(0., moduleConfig.qObsVal) else: dotProd = np.dot(np.array(element), np.array(testVector1)[0:3]) dotList.append(dotProd) inputData.CosValue = dotList unitTestSim.TotalSim.WriteMessageData(moduleConfig.cssDataInMsgName, inputMessageSize, unitTestSim.TotalSim.CurrentNanos, inputData) unitTestSim.ConfigureStopTime(macros.sec2nano((i + 1) * 0.5)) unitTestSim.ExecuteSimulation() stateLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".state", list(range(6))) covarLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".covar", list(range(6*6))) for i in range(6): if (abs(covarLog[-1, i * 6 + 1 + i] - covarLog[0, i * 6 + 1 + i] / 100.) > 1E-2): testFailCount += 1 testMessages.append("Covariance update failure") if (abs(stateLog[-1, i + 1] - stateTarget1[i]) > 1.0E-2): testFailCount += 1 testMessages.append("State update failure") stateTarget2 = testVector2 stateTarget2 = stateTarget2+[0.,0.,0.] inputData = cssComm.CSSArraySensorIntMsg() for i in range(SimHalfLength): if i > 20: dotList = [] for element in CSSOrientationList: if AddMeasNoise: dotProd = np.dot(np.array(element), np.array(testVector2)[0:3]) + np.random.normal(0., moduleConfig.qObsVal) else: dotProd = np.dot(np.array(element), np.array(testVector2)[0:3]) dotList.append(dotProd) inputData.CosValue = dotList unitTestSim.TotalSim.WriteMessageData(moduleConfig.cssDataInMsgName, inputMessageSize, unitTestSim.TotalSim.CurrentNanos, inputData) unitTestSim.ConfigureStopTime(macros.sec2nano((i + SimHalfLength+1) * 0.5)) unitTestSim.ExecuteSimulation() stateLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".state", list(range(6))) postFitLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".postFitRes", list(range(8))) covarLog = unitTestSim.pullMessageLogData('sunline_filter_data' + ".covar", list(range(6*6))) stateErrorLog = unitTestSim.GetLogVariableData('SunlineEKF.x') for i in range(6): if (abs(covarLog[-1, i * 6 + 1 + i] - covarLog[0, i * 6 + 1 + i] / 100.) > 1E-2): testFailCount += 1 testMessages.append("Covariance update failure") if (abs(stateLog[-1, i + 1] - stateTarget2[i]) > 1.0E-2): testFailCount += 1 testMessages.append("State update failure") target1 = np.array(testVector1) target2 = np.array(testVector2+[0.,0.,0.]) FilterPlots.StateErrorCovarPlot(stateErrorLog, covarLog, show_plots) FilterPlots.StatesVsTargets(target1, target2, stateLog, show_plots) FilterPlots.PostFitResiduals(postFitLog, moduleConfig.qObsVal, show_plots) # print out success message if no error were found if testFailCount == 0: print("PASSED: " + "EKF full test") # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] if __name__ == "__main__": # test_all_sunline_ekf(True, 200, True ,[-0.7, 0.7, 0.0] ,[0.8, 0.9, 0.0], [0.7, 0.7, 0.0, 0.0, 0.0, 0.0]) StatePropVariable(True)